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PRECISE DETERMINATION OF THE DISTURBING POTENTIAL 
USING ALTERNATIVE BOUNDARY VALUES 

Erwin Grotenl 
National Geodetic Survey 
National Ocean Survey, NOM 

Rockville, Md. . 20852 

ABSTRACT. Advanced gravimetric techniques can be 
applied for the precise determination of geodetic 
parameters. Data from the Global Positioning System 
(GPS) and from GMVSAT-type satellites lend themselves 
to combinations and comparisons with terrestrial data. 
Such comparisons are of special interest for well-known 
systematic distortions in terrestrial data. In addition, 
new types of data lead to new types of boundary value 
problems and imply fundamental changes in geodetic 
concepts. 

1. INTRODUCTION 

Physical geodesy was dominated for decades by the search for explicit 
solutions to the free boundary value problem,,where the unknown surface S 
of the Earth is determined together with the gravity potential in the 
space exterior to S. What attracted the most interest in these attempts 
was the various ways in which the free boundary value problem was replaced 
by a fixed boundary value problem. Molodensky's use of the telluroid as 
an approximate surface of the Earth to which the boundary values could be 
referred is the type of  solution that received the greatest attention 
during the last two decades. (For details see Molodenskii et al. 
(1962). ) Somewhat different definitions for the approximate surface were 
introduced by Krarup, Marussi, Grafarend, and others. More recently, the 
approach with the greatest theoretical interest is Sanso's solution. 
Moritz (1980) presents an excellent review of these methods. 
gives a good description of least-squares collocation solutions whichcan 
be applied to the problem. 

He also 

On the other hand, many of the prerequisites usually applied to 
those solutions are no longer valid. In the future, astronomical coor- 
dinates will not generally be considered as observable quantities because 
classical astrogeodetic techniques will have become obsolete. We will 
never know surface gravity everywhere at the Earth's surface with the 
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accuracy t h a t  i s  necessary i n  modern ope ra t iona l  geodesy. I n  s p i t e  of 
t h e  f a c t  t h a t  even r ecen t  s a t e l l i t e  t r a c k i n g  coord ina tes  may be a f f e c t e d  
by sys temat ic  e r r o r s  ( i n  t h e  p a s t  t hey  have been a f f e c t e d  by a s  much a s  
s e v e r a l  meters  and more, implying u n c e r t a i n t i e s  of t h e  o r d e r  of 10 mgal) , 
we can expect  f u t u r e  techniques t o  y i e l d  e r r o r s  of less than  1 decimeter  
i n  coord ina te s ,  and mean g r a v i t y  va lues  of a lo-by-lo block t o  about  an 
accuracy of plus-or-minus a few m i l l i g a l s  (Douglas e t  a l .  1980).  I f  t h e  sea 
s u r f a c e  i s  surveyed by s a t e l l i t e  a l t i m e t r y ,  t h e  devia t ion .  of t h e  sea  su r face  
from t h e  geoid ( o r  equ iva len t  r e fe rence  s u r f a c e )  can be determined. Thus, 
t h e  de te rmina t ion  of t h e  ocean geoid can be handled by i t s e l f  w i thou t . r ega rd  
t o  t h e  remainder of t h e  E a r t h ' s  su r f ace .  Therefore ,  t h e  o r i g i n a l  geode t i c  
boundary va lue  problem has t o t a l l y  changed. 

. 

As soon a s  t h e  d i s t u r b i n g  p o t e n t i a l  T can be i n f e r r e d  f o r  smal l  b locks ,  
such a s  lo su r face  compartments , t h e  d e r i v a t i v e  boundary va lue  problem 
(Moritz 1980) l o s e s  i t s  dominant r o l e  i n  phys i ca l  geodesy. By us ing  . 

Runge's theorem, a s  po in ted  ou t  by Krarup i n  va r ious  pape r s ,  we can 
a n a l y t i c a l l y  cont inue t h e  p o t e n t i a l  T down t o  a Bjerhammar-type sphere 
i n  t h e  E a r t h ' s  in ter ior  and determine whatever d e r i v a t i v e  (or l inear 
combination t h e r e o f )  of T w e  need a t  any p o i n t  e x t e r i o r  t o  t h a t  sphere .  

However, va r ious  d e t a i l e d  problems have t o  be so lved  be fo re  we can 
cons ider  t h e  problems of phys i ca l  geodesy i n  t h e s e  new formula t ions .  
i s  t h e  aim of t h e  fol lowing d i scuss ion  t o  b r idge  t h e  p r e s e n t  and t h e  
f u t u r e  by o u t l i n i n g  a l t e r n a t i v e  methods by which opt imal  s o l u t i o n s  can 
be achieved wi th  both c u r r e n t  and f u t u r e  d a t a .  I t  i s  n o t  t h e  aim of 
t h i s  s tudy  t o  i n v e s t i g a t e  t h e  accuracy wi th  which t h e  g r a v i t a t i o n a l  
p o t e n t i a l  W i s  determined a t  t h e  E a r t h ' s  su r f ace .  In s t ead ,  t h i s  
research  seeks t o  determine t h e  accuracy of t h e  d i s t u r b i n g  p o t e n t i a l  
T based on s t u d i e s  such a s  those  of Douglas e t  a l .  (1980),  t o g e t h e r  
wi th  accuracy e s t ima tes  of su r face  g r a v i t y ,  t hus  l ead ing  t o  accuracy 
e s t ima tes  of combination s o l u t i o n s .  

I t  

. The 'downward con t inua t ion  i s  no t  t r e a t e d  i n  d e t a i l ,  s i n c e ,  wi th  t h e  
GRAVSAT da ta  now a v a i l a b l e  (which a r e  supposed t o  y i e l d  g r a v i t y  on a 
sphere i n  space o r ,  a t  l e a s t ,  an  almost evenly d i s t r i b u t e d  set of g r a v i t y  
da t a  c l o s e  t o  a sphere i n  space ) ,  we encounter  r e l a t i v e l y  s imple downward 
con t inua t ion  problems i n  geodet ic  a p p l i c a t i o n s .  

2.  BASIC CONSIDERATIONS 

I n  Groten (1979, 1980) t h e  Neumann boundary va lue  problem was consid- 
e red  f o r  t h e  geoid o r  f o r  a r e fe rence  sphere ,  such a s  t h e  Bjerhammar 
sphere.  Using Hot ine ' s  formula (1969, p .  317, pa ra .  33) 
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where 

T = disturbing potential, 

R = mean radius of the Earth, 

P = a point on s ,  

H = Neumann kernel function corresponding to Hotine's function 
eq. (29.17) (Hotine 1969, p. 392), 

ds = an element of the unit sphere s ,  and 

6g = vertical derivative of the disturbing potential, i.e., the 
gravity disturbance, 

we found formulas for computing the deflections of the vertical as well as 
their horizontal derivatives using gravity disturbances. 
the kernels 

In these formulas 

were used. 
(P,ds) tends to zero, it makes sense to verify these relations using a 
generalization of eq. (1), which corresponds to the Stokes-Pizzetti gener- 
alization of Stokes' formula. The corresponding kernel solves the Neumann 
boundary value problem in the space exterior to the geoid or to the approxi- 
mating sphere. 

Because H and H' tend to infinity when the spherical distance 

This closed formula is again found in Hotine (1969, p. 392, 
eq. 29.16). 
computed, we 

Denoting by r 
have 

the radius vector of the point P at which T is 

2R 
r f i  

an(& + R/r - cos$) - - - -  
1 - cos$ 

where 0 = [l - 2(R/r) cos t) + (R/r)2]. 
H'(r,t)) and H"(r,JI) are derived in appendix A for r = R; they are identical 
to the derivatives of  

Note that r - > R. The functions 

H E H($) and H' 5 HI(+) 

as discussed by Groten (1979). Because planar approximations are suffi- 
cient for computing second derivatives of the disturbing potential, only 
H' is important for operational geodesy. Analogous to the Vening-Meinesz 
formula we obtain (Hotine 1969, p. 318, para. 36) 

3 



where a is azimuth and y is normal gravity. For the solution of the 
spatial case we obtain 

P S 

The second derivative H" = a2H/atJ? is of interest for interpolating 
deflections which, because it is locally applied, is accomplished 
more easily by collocation. 

We can write the analogous least-squares collocation solution in the 
form of 

where F(P) represents ( p , q )  of eq. ( 4 )  or T of eq. (1); f is the vector 
of discrete gravity disturbance values and - C is the sum 

- 
- -  C + D  (6) 

where E is the autocovariance matrix; D is the error covariance matrix 
of f, assuming zero correlation between noise and signal; and K is the 
cross-covariance matrix between f and F. 
may be necessary depending on how K is derived. 

Additional corrections to eq. (5) 

By comparing vertical gradient formulas for 6g and Ag (e.g., Heiskanen and 
Moritz (1967: p. 115, formula 2-217) and Molodenskii et al. (1962: formula 
IzI.2.5)), it is realized that planar approximations of vertical gradients 
of Ag and 6g are identical. Spherical approximations differ by 

L+-. 28 (P) 6T(P) 

R2 R 

4 

(7) 



Consequently, the downward continuation of gravity disturbances 6g is 
fully analogous to the downward continuation of gravity anomalies. 
fore, we could also apply eq. (5) to the downward continuation problem, 
i.e, the determination of gravity disturbances on the Bjerhammar sphere 
from surface gravity disturbances. In any case, the smoothing usually 
associated with the application of least-squares collocation techniques 
is necessary in unstable downward continuation processes. 

There- 

Even though the vertical gradient formula of 6g includes the small term 
6T(P)/R2, which is lacking in the formula for the anomalous vertical gra- 
dient, the first-mentioned formula is basically less intricate than the 
latter. 
same level. 
in the separations of level surfaces of actual gravity from those of normal 
gravity does not play any role; whereas, in the case of the anomalous gravity 
gradient the increase of separation of "geops" from "spherops" of the 
analytically continued external potential (which is different from the 
internal potential) complicates the computation with increasing depth. 

Concerning the difference between gravity disturbances on the sphere 
and at the Earth's surface S, we must be careful when deriving the cross- 
covariance from experimental data using covariance propagation. Whenever 
the Vening-Meinesz kernel (in the case of  Ag) and the kernel H' (in the 
case of 6g) are used for the derivation of K in determining ( c ,q ) ,  then 
Ag or 6g referred to the sphere will yield an approximation that corre- 
sponds to the classical boundary value problem, i.e., a Stokes-type 
approximation. According to the gradient solution of the oblique- 
derivative boundary value problem, we may replace 6g with 

In 6g, both actual gravity and normal gravity are referred to the 
Therefore, in the vertical gradient the variation (with height) 

where h is the elevation of the "running point" on S .  

In other words, for practical applications Bjerhammar's and Molodensky's 
concepts can be transferred from the Ag solutions to the 6g solutions. 
very precise computations, of course, we have to be aware of the differing 
definitions of ( 5 , ~ )  on the geoid and at the Earth's surface. Moreover, 
the separation of the geopotential (geop) surface from the corresponding 
spherical potential (spherop) surface depends on the elevation; therefore, 
it should be noted whether the point of evaluation, P, is on the geoid or 
in space. Consequently, we arrive at a variety of possible mixtures of 
collocation solutions with conventional procedures. The chosen mixture 
depends strongly on the desired degree of smoothness emerging from the 
final results. The degree of smoothness depends on the specific covar- 
iance functions used in the application. The impact of this choice is 
seen in various examples of practical applications, such as those used 
by Becker (1980). 

For 
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3 .  TRUNCATION ERROR 

In a previous investigation (Groten 1979), the original function 

W W 

was replaced by 
W 

Pn (cos$)- i=c - 2n + i 
n + l  n= 2 

With this function the solutions are referred to a geocentric location 
and the "scale problem" associated with Ho is separated from the problem 
itself, as in case of the Stokesian solution. Since 

it is readily seen that the behavior of the kernel H depends on whether 
or not the first two spherical harmonics are included in such formulas as 
eqs. (1) or (3). This behavior affects the influence of the remote zones 
in those integral formulas. Because Groten (1979) previously found that ' 
the behavior of eq. (9) is significantly superior t o  eq. (10) when remote 
zones are to be considered (we associate the term "truncation error'' with 
this omission in general), the modified function K is only mentioned here. 

Moreover, for autocovariance functions, as used in least-squares collo- 
cation, we always begin the summation with n = 3 for practical reasons. 
Therefore, the functions H and H need not be distinguished in these ap- 
proa,ches. In principle, we could start with 6g from n = 1 for the summa- 
tion of degree variances. 

Since the data at hand are deficient, we need to apply methods in which 
the influence of presently available gravity models is minimized. In 
areas like North America and Europe, for example, we have at our disposal 
a reasonable field in the neighborhood of a station. For the remote zones 
a truncated model, such as the Goddard Space Flight Center Model GEM 10B, is 
available. The 
qualitative comparison between Stokes' type of solution and Neumann's type 
of solution was given by Groten (1979). This was supplemented by Stock 
(1980) who made quantitative comparisons for specific gravity field para- 
meters referred to geoid undulations. Analogous studies for specific fields 

The inadequacies of present global models are well known. 
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r e l a t e d  t o  (5,q) a r e  planned i n  a forthcoming paper by Stock.  
t a t i v e  i n v e s t i g a t i o n s  f u l l y  cor robora te  t h e  conceptual d i scuss iog  given by 
Groten (1979),  and a r e  a l l  based on t h e  e r r o r  i n t e g r a l  introduced by Groten 
and Moritz (1964) : 

These quant i -  

($) s i n  $ d$. 

These have also - r e c e n t l y  been appl ied  by Ihde (1980), where 'I; denotes  the 
ke rne l ;  i . e . ,  k t akes  the p l ace  of H or H' . 

For l ea s t - squa res  c o l l o c a t i o n ,  we can draw t h e  important  conclusion 
from these  results t h a t ,  t o  some e x t e n t ,  t h e  high pass  f i l t e r i n g  involved 
i n  t h e  t r a n s i t i o n  from 

t o  

00 - 
n 6g =) 6g 

n=2 

i s  compensated by t h e  s u b s t i t u t i o n  of t h e  Stokes ke rne l  

00 

2n + 1 H = 2 n+l P, (cos$)- 

n= 0 

(The f a c t  t h a t  S i s  used f o r  t h e  E a r t h ' s  s u r f a c e  a s  well a s  f o r  S tokes '  
ke rne l  should n o t  be confusing.)  

7 



Consequently, the autocovariance function of 6g on the unit sphere 

00 

where on(6g) is the degree variances of 6g, does not necessarily imply 
that the influence of the remote zone increases when compared to 

Here 

is a straightforward consequence of 

*gn % 
R-• - 

T n - R - =  n - 1  n + 1  

Because (n-l)/(n+l) as well as (n-l)?/(n+l)? tend sufficiently close to 1 
as n goes to 30, the presently available gravity models seem to be satis- 
factory for a comparison of the high and low pass filtering effects in- 
herent in the transitions S+H and Ag+6g, respectively. 
introduced assumptions that might be considered as one-sided; hence, a 
further investigation of these assumptions is necessary. 

The practical consequences of the relation shown in eq. (20) become 
obvious when we consider the power,spectrum within the range of 

Also, Stock (1980) 

using the harmonics of the GEM 10 model. Tables la and b compare the sums 
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Table la--Power spectrum constituents corresponding to GEM 10 for 6g and Ag. 
For a19, instead of 2.8 from GEM 10, the value 2.0 was used. 

3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

412.5 
278.5 
224.1 
177.8 
140.5 
106.6 
87.7 
70.4 
55.9 
46.4 
41.4 
33.0 
28.5 
24.6 
21.3 
1'8.7 
14.8 
12.3 
9.9 
7 .7  
5 .7  
5 .1  
4.6 
3.8 
3.8 
3.1 
2 .1  
1 . 4  

134.0 
188.4 
234.8 
272.0 
306.0 
324 8 
342.1 
356.6 
366.1 
371.1 
379.5 
384.0 
387.9 
391.2 
393.8 
397.7 
400.2 
402.6 
404.8 
406.8 
407.4 
407.9 
408.7 
408.7 
409.4 
410.4 
411.1 
412.5 

187.0 
153.5 
133.9 
113.3 
94 .3  
75.2 
63.8 
52.7 
43.0 
36.4 
32.8 

26.6 
23.2 
20.2 
17.6 
15.5 
12.4 
10.4 
8 .4  
6.6 
4.9 
4.4 
4.0 
3.3 
3.3 
2.7 
1.8 
1.2 

33.5 
53.1 
73.7 
92.7 

111.8 
123.2 
134.3 
144.0 
150.6 
154.2 
160.4 
163.8 
166.8 
169.4 
171.5 
174.6 
176.6 
178.6 
180.4 
182.1 
182.6 
183.0 
183.7 
183.7 
184.3 
185.2 
185.8 
187.0 
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Table lb--Power spectrum constituents related to a sphere 

A A '  B B' 

U (mgal?) (mgal2) (mgal?) (mgal?) 

3 420.6 397.6 191.2 178.6 
4 285.0 266.4 157.3 145.8 
5 229.8 213.3 137.4 126.7 
6 182.7 168.3 116.5 106.7 
7 144.9 132.4 97.2 88.4 
8 110.2 99.1 77.7 70.1 
9 90.9 81.9 66.0 59.2 
10 73.1 65.3 54.6 48.6 
11 58.2 51.6 44.6 39.4 
12 48.4 42.7 37.8 33.2 . 

13 43.2 38.0 34.1 29.8 
14 34.5 30.0 27.7 24.0 
15 29.8 25.7 24.2 20.8 
16 25.8 22.0 21.1 18.0 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

22.3 
19.5 
15.5 
12.9 
10.4 
8.1 
5.9 
5.3 
4.8 
4.0 
4.0 
3.3 
2.2 
1.5 

18.9 
16.5 
13.0 
10.8 
8.6 
6.7 
4.9 
4.4 
3.9 
3.2 
3.2 
2.6 
1.7 
1.1 

18.4 
16.2 
13.0 
10.9 
8.8 
6.9 
5.1 
4.6 
4.2 
3.5 
3.5 
2.9 
1.9 
1.3 

15.6 
13.7 
10.9 
9.1 
7.3 
5.7 
4.2 
3.8 
3.4 
2.8 
2.8 
2.3 
1.5 
1 .o 
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n=30 

n=u 

n=30 

n=u 

n=u 
A' = On (6g) 

n=3 

and 

n=u 

n= 3 

for 3 I u I 30. 
a=6378140 m. Thus, the part of the power inherent in specific partial 
sums can immediately.be seen starting from u = 3 as well as from u = 30. 
For u > 30, the uncertainty of the coefficient is substantially higher 
than the difference between on(&) and on(Ag). 

collocation procedures to gravity disturbance residuals 

A ,  A ' ,  B, and B' refer to the GEM mean equatorial radius 

We can conclude from table la that it may be advantageous to apply 

C 6gn 
n= 10 

instead of to the gravity disturbances themselves. 
portion can be solved by using spherical harmonic formulas, such as eq. 
(20), or corresponding integral formulas. 
by considering the partial sums in table lb. 

The low harmonics 

This conclusion is corroborated 

To evaluate eq. (17) the degree variances have to be transformed from 
the GEM equatorial radius "a" to a mean sphere of radius RE = 6371 km. 
The corresponding transformed degree variance sums are shown in tablelb. 

Stock (1980) discusses in detail the gravity field characteristics upon 
which his results are based. 
representation is obtained by forming the ratios of these truncation 
errors. 
form 

A less specific and more generally valid 

These are basically found in the integral of eq. (12) in the 
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'H2 (9) s i n  $ d$ 

$0 

for the potential and the geoid undulation, and they depend on the error 
variances and covariances of the mean gravity values. in the zone $ 0  < $ 2 
TI of the integral eq. (1) and on the size of that zone. Because the-error 
covariances are neglected in the above solution, which limits the validity 
of the numerical solutions, the ratios are definitely preferable. 
sequently, figure 1 shows the ratio of truncation errors, e, i.e. , 

Con- 

where the error variances and error covariances of 6g and Ag can be con- 
sidered to be nearly identical because the error contribution of T in 

where h is elevation, may be neglected. 
has been taken into account. 

Nevertheless, this 'error source 

As far as. eq. (25) is concerned, some care is necessary. Heiskanen and 
Moritz (1967: p. 85) define 6g as the negative gradient -aT/ah, whereas 
Hotine (1969: p. 392, formula 29.25) applies the positive gradient 6T/6h. 
Analogously, 6g is defined by Heiskanen and Moritz (1967: p .  85), which 
is in agreement with our eqs. (20) and (25), whereas Hotine ,(1969, p. 392 
formulas 2 9 . 3 0  and 2 9 . 3 3 )  uses the opposite sign. 

Figure 1.--Truncation error ratios as a function of $ , 9  
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An apparent conclusion we may draw from tables la and b is 

However, in areas such as the Mediterranean, where Ag < 0 and N > 0 often 
occur together, we can have 

because of the term 

2 N  4 -0.3086N (in mgal/m) 

(with geoid heights N in meters), which represents the difference between 
gravity anomalies and gravity disturbances in the sense of Ag-6g. 
Because Stokes' function as well as Hotine's function H tends to 
infinity as e0 (i.e., in the nearest neighborhood around the point of 
computation) the influence of that zone is overwhelming. 
16gl<[Agl in that area, the integral of eq. (1) has a corresponding ad- 
vantage over Stokes ' integral. 

et al. (1962, p. 147). A straightforward analogy using derivations of 
Molodenskii immediately yields 

Therefore, if 

An alternative representation of T (6g) can be deduced from Molodenskii 

where qn($o) are truncation coefficients that have been computed in 
detail by Groten and Jochemczyk (1978). 
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Analogously, 

rl 
a da s i n  $ d$ 

- 
s i n  4v 

0 

Just as the integral of the type shown in eq. (23) depends on the 
integral in eq. (26) and the integral 

depends on the first integral in eq. (22),, the average contribution repre- 
sented by the series in eq. (26) can be given by an analogous series already 
used by several authors, which was derived from a formula of Molodenskii et al. 
(1962, p .  164). 

The derivation of the .average total deflection of the vertical 

is straightforward. Here the total deflection is given by 

2 2  e 2 = c  + n .  

The analogous relation for Vening-Meinesz's formula reads (Molodenskii 
et al. 1962, p. 166) 
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The 
et a1 
orien 
which 

formulas for some Qn are given in analytical form by Molodenskii 
. (1962, p. 148). However, more appropriate high speed computer- 
.ted recursion formulas have been published by various authors, 
are well known. 

Differencing, from formulas (29) and (31) we obtain 

Setting $0 0 yields (Molodenskii et al. 1962, p .  87) 

as a consequence of 

2 
Qn($,) = n-l 

for #o = 0. From Groten and Jochemczyk (1978), we obtain 

2 
n+l qn ($=O) = - - 

(33) 

( 3 4 )  

For # = 0, eq. (32) must vanish. By inserting eqs. (34) and (33) into 
eq. (32) we obtain a check on eq. (32). 

4. ALTERNATIVE GRAVITY FIELD REPRESENTATIONS 

Contrary to the single layer density in the oblique boundary value 
approach, which involves intricate mathematical handling, the use of single 
layer densities on a sphere is easy and efficient. 
tages are similar to the gravity disturbances as far as the truncation 
error is concerned, it will be considered in the present context for 
its high harmonic gravity field representation. In this case Ag and 
N have to be continued downward onto the Bjerhammar sphere, yielding 

Even though its advan- 
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\1 = Ag + 0.2311 N 

where Ag is given in milligals and N in meters. Using eq. (25) we find 

(37) 1-I = 6g - 0.0770 N 

and 

P = 6 g - -  2yR 

The analytical continuation of 

N = T/y (39)  

is easily performed by applying (Heiskanen and Moritz 1967, p .  310) 

This type of analytical continuation from the surface to the sphere 
at the Earth's interior can also be made by collocation. 
derivatives of the potential are continuous even in the interior of the 
Earth. In contrast, second derivatives are discontinuous, in general, 
so that the aforementioned rather sophisticated downward procedures are 
more appropriate for Ag than for elementary gradient formulas. 

However, first 

By taking a surface density of a single layer form, such as 

or 
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where G is the. Newtonian gravitational constant, we conclude that gravity 
disturbances are capable of providing a good approximation for such a 
surface density. 
harmonic part of the gravity field. 
substitute for p in various approximations, e.g., in error estimation and 
feasibility studies. 

This result is important for a representation of the high 
It is realized that 6g is a useful 

The use of single-layer density formulas, such as 

applied to a sphere (with !2 being the straight line distance between P 
and ds) for determinations of (N,[,q), is discussed by Groten (1979) and 
Stock (1980). Details on truncation error behavior can be found in these 
two sources. 

5. A N E W  TYPE OF GEODETIC BOUNDARY VALUE PROBLEM 
+ 

Whenever the geocentric coordinates of any station P(r) are given, the 
determination of the corresponding ellipsoidal coordinates (B,L,H) (with 
respect to any arbitrary geocentric reference ellipsoid) is a simple alge- 
braic transformation that is solved by a one- or two-step iteration proce- 
dure. Consequently, whenever gravity is given at P we can evaluate normal 
gravity y(P) using P(B,L,H). 
to satellite altimetry for sea surface topography determination. 
on land y (P) can be evaluated if geocentric station coordinates are ob- 
tained from tracking Global Positioning System satellites or similar types 
of satellites. 
obtained from GRAVSAT-type satellites or from surface gravity. 
of precise satellite information on the gravity potential, we obtain N, or 
height anomalies 5, immediately from eq. (39), assuming that the terrestrial 
gravitational constant GM, as well as a "scale quantity" (such as the semi- 
major axis of the Earth ellipsoid), is precisely known. With Very Long Base 
line Interferometry (VLBI) and other high-precision techniques now available 
the "scale" is no longer taken from such equations as (Heiskanen and Moritz 
1967: pp. 101-103) 

Moritz (1974) has applied this reasoning 
Similarly, 

In principle, it does not matter whether or not g is 
In the case 

where No is the zero degree harmonic of geoid height N, 6(GM) is the error 
in GM, and 6W = Wo-Uo is the difference of the actual potential W on the 
geoid and the normal potential U on the ellipsoid. 
of the boundary value problem at the Earth's surface we can derive a 
corresponding gravity 6W'=6W that represents the difference between the 
actual potential at P and the normal potential on the ellipsoid. Again 
eq. (40) can be used. Thus 6W'-6W is readily computed. 

Based on the solution 
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With the present uncertainty in the value of GM we arrive at a corresponding 
offset No on the order of 

N 4 0.3 m. 
0 

Thus N is given either by 

T = W - U ,  

together with eq. (39), or by a formula such as eq. (l), which uses b g .  
The deflections of the vertical are obtained by using eqs. (4) or (5) 
or similar formulas. Because of the strong influence of high harmonics 
in ([,q), as seen by inspecting formulas such as Groten's eq. (6.229) 
(Groten 1979/80, p. 488), the direct use of differentials in eq. (45) 
is not possible. 
lites can be used in eq. (27) together with terrestrial data. 
because astronomical coordinates are no longer of primary importance 
in modern geodesy we can omit details. 

On the other hand, the harmonics derived from satel- 
However, 

The difference between geoid undulation, or height anomaly, and ellip- 
soidal height subsequently yields the orthometric height, h, or normal 
height, E, respectively, i.e., 

2 
h = H -  N 

(45) 

By comparing orthometric heights h and normal heights h obtained in this 
manner with terrestrial results we can determine the offset of the national 
height system. 

Obviously, 

"Offset" means the difference between the conventional 
zero point" and the geoid at the fundamental station of the vertical datum. 11 

where u is the separation between the geoid and the quasi-geoid. 
surfaces coincide, of course, on the oceans, i.e., at a tide gage repre- 
senting a zero level of  the leveling systems). Using this formula, we 
can convert classical geoidal systems into modern Molodensky-type systems. 
Useful operational formulas based on eq. (40) can be found in conventional 
textbooks. On the other hand, from the definition of normal and orthometric 
heights we immediately obtain 

(Both 

2The use of H for Hotine's function as well as for the ellipsoidal heights 
should not be confused. 
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where the bar indicates mean values taken along the plumb lines between 
the respective reference surfaces. 

Since the difference between ground disturbances 6g(P) and sea level 
disturbances referred to the geoid, or to a Bjerhammar sphere, was 
considered by taking into account the terms in eq. (8), we thus obtain 
a complete system that enables us t o  compare leveling results with eleva- 
tion data resulting from eqs. (46 )  and ( 4 7 ) .  Since Bjerhammar's solution 
of the boundary value problem gives results that are referred to boundary 
values on an exact sphere, there is no spherical approximation involved 
whenever eqs. (46 )  and (47)  are applied in the exact form. 

Consequently, we have the possibility of verifying distortions in 
leveling results by using space techniques applied to physical geodesy. 
Holdahl (1981) .and others have described the pr inc ipal  sources of such 
distortions. 

In view of such errors and other difficulties especially associated 
with the implementation of orthometric heights, a sufficient approxima- 
tion for eq. (48) in many cases is given by Heiskanen and Moritz 
(1967, p. 328) 

N - 5 Aggh , (50) 

where the left side is in meters, if AgB (Bouguer anomaly) is given in 
gals and h is in kilometers. 

These determinations of the reference systems upon which first-order 
levelings are based are of special interest if the zero point of the system 
is no longer available, as in the case of several national leveling systems 
in Europe. There is, for example, no access to the fundamental base station 
in the German leveling system; moreover, the tide gage representing the 
zero level no longer exists. Consequently, the offset of the network itself 
with respect to the geoid or t o  the quasi-geoid has to be determined without 
reference to the physical "zero level." 
"zero reference" follows. 

A more detailed discussion of the 

6 .  RELATIVE COMPARISON OF SPACE AND TERRESTRIAL DATA 

Contrary to absolute determinations of ellipsoidal heights 

H = N + h ,  

as obtained from space and terrestrial data, the No term does not play any 
role in comparing differences of ellipsoidal heights a t  different 
stations. 
the extent of the area where data can be used to determine relative 

If very high accuracy is desired, the ephemeris errors limit. 
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locations (including elevation differences) with an accuracy of a few 
centimeters. Although comparisons of distance measurements (satellite 
laser observations vs. VLBI) indicate an accuracy of a few centimeters 
even over very long distances, the absolute orientation of relative 
station location vectors is not yet available with comparable accuracy. 
However, over short distances, d < 100 km or so, an accuracy of about 2 cm 
is expected from VLBI techniques applied to the Global Positioning System. 

If, instead of using the "exact sphere" approach given by Bjerhammar, 
the conventional spherical approximation is applied in determining the 
geoid and plumb line deflection, corresponding ellipsoidal corrections may 
offset distances d >> 100 km. Mather (1973) considered that correction 
(other formulas are well known from other studies by Bjerhammar, 
Lelgemann, Zagrebin, and others) together with atmospheric and simi- 
lar corrections which must be considered in absolute comparisons. 
one aims at accuracies of better than +20 cm, then these corrections must 
be incorporated. 
Ag cah also be directly applied to 6g. 
associated with the atmospheric mass shift can always be neglected. 
These amount to less than 1 cm. (See,  e.g.,  Moritz (1980, p -  425.) 

When 

Formulas t h a t  were derived for use in combination with 
However, the indirect effects 

Consequently, relative comparisons of the vertical station coordinates 
obtained from space data with those obtained from applications of physical 
geodetic techniques do not involve theoretical difficulties if the distances 
are of the order of 100 km. 
leveling, see, e.g., VaniEek et al. (1980) .) 

(For details on systematic distortions in 

7. REMARKS ON COMBINING SPACE AND TERRESTRIAL DATA 
It might make sense to consider the mixed boundary value problem where 

gravity is given on some part of the Earth's surface S and the disturbing 
potential 

(39d 
T = Ny 

is supposed to be obtained from satellite altimetry for the remaining part 
of S .  The corresponding mixed boundary value problem involves difficulties 
if it is applied to (Ag, T)s in the determination of T(P), where P is again 
a point in space exterior to S. 
gravity is again given in terms of disturbances 6g. The mixed problem, 
which is a combination of a Neumannian and a Dirichlet problem referred 
to a Bjerhammar sphere, i.e., 

The problem is much easier t o  handle when 

has been covered in the mathematical literature since 1933. 
Giraud (1933). ) 

(See, e.g., 
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However, when considering an altimeter resolution on the order of 
+lo  cm or better, a serious problem can arise: 
recommendation passed by the International Association of Geodesy at 
the General Assembly of the International Union of Geodesy and Geophysics 
i n  Canberra,  1980, t h e  t o t a l  t i d a l  e f f e c t  has t o  be e l imina ted  i n  geode t i c  
data. To eliminate the so-called "permanent tide" in satellite altimetry 
data, it would be necessary to know the distribution of the relevant defor- 
mation parameters in terms of the Love number k, although the density 
distribution of the Earth is not needed. Since the secular k is not 
available, we cannot reduce the actual mean sea surface to a tide-free 
model of the sea surface. We can only reduce it to an arbitrarily defined 
surface by using two doubtful second-degree Love numbers (h,k). 
principle, a reduction of all data is possible by using the same tide-free 
Earth model. But models available today are not necessarily "tide free." 

according to the 

In 

Moreover, the equipotential surfaces that correspond to an arbitrary 
Earth model would be meaningless from the viewpoint of geophysical interpre- 
tation as far as ocean streams and currents are concerned. 
d e t a i l s  on permanent t i d e  problems, see Groten (1979). ) 

(For further 

8.  THE BASIC ZERO-REFERENCE OF HEIGHT SYSTEMS 

P. Vanirek et al. (1980) reviewed the arguments in favor of a rela- 
tively stable geoid, one that is only weakly affected by elevation and 
gravity variations with time. On the other hand, at sea and along the 
coast, the situation obviously is more intricate and complicated, involving 
the previously mentioned difficulties to define a unified zero level of 
height systems. Mean sea level, which defines the volume of  the Earth, 
can be considered, to some extent, as one part of the four defining quantities 
of the normal gravity potential if it replaces, for example, the semimajor 
axis of the ellipsoid. 
rigorous definition for mean sea level. At the present time, this problem 
and other related questions have not been solved, so that emphasis must be 
put on relative comparisons, as pointed out in section 6, instead of 
absolute comparisons of space data with terrestrial results, as applied to 
techniques of physical geodesy. Therefore, any discussion of nonlinear 
solutions for the geodetic boundary value problem seems to be premature 
as far as their possible application is concerned. 

Consequently, for precise geodesy we need a 

Moreover, gravity disturbances of surface type 6g(P), as well as 
gravity disturbances at the geoid 6g(G), are affected by offsets and sys- 
tematic distortions of the height system that is used for evaluating 
normal gravity y(P) and gravity g(G) on the geoid: 
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Consequently, with y(E)  = y on t h e  e l l i p s o i d  and 

2 2 0.3086 mgal/m 

we o b t a i n  t h e  approximation 

One of t h e  most s e r i o u s  problems i n  t h e  p r e c i s e  a p p l i c a t i o n  of phys i ca l  
geodesy i s  shown i n  eq.  ( 4 6 ) ,  where eq.  ( 4 5 ) .  must be taken  i n t o  account 
a s  wel l  a s  t h e  o f f s e t  of t h e  l e v e l i n g  systems. 
r igorous ,  eq.  (47) should be w r i t t e n  a s  

Therefore ,  t o  be more 

H = < +  < , + h + S h  

where 5 
o f f s e t  of t h e  s p e c i f i c  he igh t  system caused by t h e  d i f f e r e n c e  between t h e  
l o c a l  sea s u r f a c e  topography a t  t h e  ze ro  re ference  p o i n t  of t h e  l e v e l i n g  
system, and t h e  he igh t  of t h e  quasi-geoid i s  t h e  geoid he igh t  a t  t h e  t i d e  
gage s t a t i o n .  
i n  t h e  or thometr ic  system o r  t h e  normal he igh t  system. 

i s  t h e  he ight  anomaly harmonic of zero  degree;  &6h i s  t h e  0 

This  o f f s e t  has about t h e  same va lue  whether it i s  expressed 

The problem of a unifying l o c a l  he ight  system can be solved 
approximately when a precise g loba l  g r a v i t y  f i e l d  becomes a v a i l a b l e  by 
us ing  GRAVSAT-type da ta  o r  by g loba l  s t a t i o n  p o s i t i o n i n g  wi th  VLBI and/or  
s a t e l l i t e  l a s e r  pos i t i on ing .  
t o  d e f i n e  a p r e c i s e  geoid (which i s  t h e  ze ro  r e fe rence  f o r  e l e v a t i o n s )  
wi th  an  accuracy on t h e  o rde r  of a few cent imeters .  
t h e r e  i s  no need f o r  such a p r e c i s e l y  def ined  geoid i f  we can measure o r  
model t h e  ins tan taneous  e l e v a t i o n s  above t h e  e l l i p s o i d  a t  a s p e c i f i c  epoch 
on land and a t  s ea .  
coord ina tes  a r e  obtained from VLBI measurements o r  wi th  lower accuracy 
from Doppler d a t a .  
t r ack ing ;  a t  s e a ,  p r e c i s e  a l t i m e t r y  enables  t h e  de te rmina t ion  of coord ina tes  
with corresponding accuracy. Therefore ,  a u n i f i e d  worldwide he igh t  r e fe rence  
system i s  f e a s i b l e  by t y i n g  toge the r  t h e  d i f f e r e n t  v e r t i c a l  datums. 
b a s i c a l l y  need t o  know i s  t h e  volume of t h e  Ea r th  andothe t e r r e s t r i a l  g rav i -  
t a t i o n a l  cons tan t  GM; f o r  t h e  volume, t h e  p o t e n t i a l  W a t  t h e  sea  s u r f a c e  
can be s u b s t i t u t e d  i n  p r i n c i p l e ,  b u t  t hen  t h e  d e f i n i t i o n  of t h e  sea  s u r f a c e  
e n t e r s  again.  

Rizos (1980) has shown how d i f f i c u l t  it i s  . 

On t h e  o t h e r  hand, 

This  i s  b a s i c a l l y  p o s s i b l e  when r e l a t i v e  s t a t i o n  

Absolute coord ina tes  a r e  obta ined  from s a t e l l i t e  l a s e r  

A l l  we 
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If the ravity values are referred to a constant speed and axis of 

a w variable only to a few microgals), then the only question remaining 
to be solved is the flattening to which the data should be referred. 
tidal potential has to be completely removed from all geodetic data in 
order to obtain a harmonic disturbing potential because, being an "internal 
potential," the tidal potential U' itself is nonharmonic. In other words, 
the tidal potential does not go to zero with increasing distance from the 
geocenter. 
removed completely.  That i s ,  t h e  d i r e c t  p a r t  of U' r e l a t e d  t o  Mo and So 
can be eliminated, but the remaining part U' (k-h) of 

rotation B , (implying mostly negligible corrections for polar motion and 
The 

On the other hand, the permanent tides Mo and So carrnot be 

U' (1 + k - h) 

cannot be separated because the associated second-degree Love xmbers (h, k) 
are not known. 
U' (l+k)/g caused by Mo and So has to be eliminated. Therefore, whenever 
sea altimetry is involved, it must also be reduced. However, ;I' (k-h) is 
of a different nature; i.e., it can be represented by an external potential. 
Consequently, its removal is not necessary if we refer all data to the 
actual surface, i.e., the flattening f corresponding to the actual 52 of 
the Earth. 
part of U' (l+k-h) from all geodetic data. 

In addition, the part of the deformation of the sea surface 

This is done by just eliminating U' together with the transient 

If we removed the permanent constituents of U' (l+k-h) instead of 
U' (Mo, S o ) ,  then the purely geometrical data would also be affected. 
Secular (h, k) are unknown. 
as k=0.95 are derived from doubtful quantities. 
about sufficient accuracy and little is known about the permanent.tida1 
deformation of the sea surface. Therefore, we should apply the tidal 
correction in such a way that only the smallest number of hypotheses 
is introduced. Consequently, we should remove those parts that must 
be eliminated to obtain a harmonic disturbing potential. When U'-(Mo, 
So) is removed, together with the transient parts of U' (l+k-h) , a 
solution is achieved that is practically free of hypotheses. This 
statement is true if geometrical observations (such as those employing 
VLBI data) are correctly reduced for transient Earth tide constituents. 
This method is feasible with sufficient data at hand. 

We know only that such crude estimates 
Even less is known 

Thus, the basic questjons related to a normal gravity potential are 
solved, with f, GM, W, and the semimajor axis or volume of the ellipsoid 
being the four main parameters. 
high-precision geodesy: 

A few additional remarks are in order fcr 

When normal gravity is needed with an accuracy better than 2 70 pgal, 
then formulas such as 
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YO = ye (1 + 81 sin2@ t 8 2  sin2 2@) 

are adequate.' Whenever an accuracy of 2 5 pgal is important, then 

is preferred. Rizos (1980, p. 172) carefully studied this topic. 
Numerical values for the coefficients pi (i=1,2,3,4) are found in 
the special issue of the Bulletin Geodesique (Geodetic Reference System 
1967, International Association of Geodesy, Paris , 1970) for the 1971 
reference system. By yo we denote gravity on the ellipsoid; y = Y on 
the ellispoid at the latitude @ = 0, i.e., at the equator. e 

Using eq. (20) we obtain 

N =  n 

r the spherical harmonic expan f ion 

n N IN 
o f  geoid undulations. 
i f  such a gravity harmonic is known to an accuracy of k 50 pgal we will 
obtain geoid height harmonics to an accuracy of 2 30 cm and 2 1 cm or 
better. 
elevation H above the ellipsoid E 

Using n=2 and n=33, respectively, we realize that 

From the well-known Taylor expansion of normal gravity at 

with (Heiskanen and Moritz 1967, p. 78) 

and 
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We obtain approximations that are limited to linear terms in the 
flattening f. (For a definition of the well-known parameters in these 
two formulas, see Heiskanen and Moritz (1967) .) 
normal g r a v i t y  systems of 1971 o r  1980 Somigliana's formula i s  capable 
of y i e ld ing  normal g r a v i t y  t o  an accuracy of be t te r  than  i 50 pgal .  
Uncertainties resulting from atmospheric effects amount to 2 5 cm in 
geocentric positions (Rizos 1980). These are due to displacement of the 
mass center and to an uncertainty of f 40 pgal caused by temporal shifts 
in atmospheric masses in the gravity itself. (See, e .g., Christodoulidis 
1979. ) The relatively small effect of local or regional (high-frequency 
part) distortions in gravity compared to global or large-scale distortions 
(low-frequency part) is realized by inspecting eq. (20a). Consequently, 
absolute determinations of geoid heights are generally more distorted than 
relative geoid determinations. 
are determined by using satellite orbit analysis. 
of the Earth causes its principal axis of inertia to migrate around the 
celestial pole along a spherical cone with a diameter of 2" and with the 
cone 's  apex being a t  t h e  E a r t h ' s  cen te r  of mass. The per iod of t h i s  motion 
is nearly diurnal. The radius of the circular path around the pole amounts 
to more than 60 m at an elevation of 200 km (which is close to the anticipated 
altitude of the GRAVSAT satellite orbit). The resulting errors in the 
gravity field affect mainly the large scale (global or absolute geoid) 
determinations. With tidal data at hand, the corresponding influences 
on the gravity field can be taken into account with an accuracy of better 
than 50 pgal. 

When applied to the 

This is especially true because low harmonics 
The luni-solar deformation 

Recent studies by C. C. Goad (1980) at NOAA/NOS National Geodetic Survey 
reveal astonishingly good agreement of modeled.Earth-tide perturbations 
with observed Earth-tide variations and associated indirect effects. 
Moreover, forthcoming sea tide models of even longer period tides 
(E.W. Schwidersky, Naval Surface Weapons Center, Dahlgren, Va., private 
communication 1980) will soon be available. Therefore, as soon as 
GRAVSAT-type satellites are available, yielding an accuracy on the 
order of 22 to 3 mgal for mean anomalies of lo-by-lo blocks, it is logical 
to assume that the combined satellite and terrestrial gravity fields will 
also have an accuracy of at least 3 mgal. 

Using the free-air gravity gradient it is readily seen that a f 10 cm 
uncertainty implies a corresponding uncertainty of f 30 pgal in gravity. 
Even the present uncertainty of 2 30 cm caused by the uncertainty of the 
terrestrial gravitational constant GM would imply an uncertainty of only 
2 90 pgal in gravity. This effect again concerns only the zero harmonic, 
i.e., the absolute determination of geoid heights. 
of the same order of magnitude in Doppler location determination (Anderle 
1979), but basically higher accuracy in ARIES-type VLBI measurements and 
substantially higher accuracy anticipated in small-scale VLBI and GPS 
approaches (MacDoran 1979; Counselman and Shapiro 1979), we can expect 
that 6g will be determined in the future to the same accuracy as Ag. 
This statement is true for measurements on land; at sea 6g is better 
than Ag because of the deviations of the sea surface from the geoid. 
The latter will become important as soon as satellites equipped 
with high-precision altimeters are available. 

With relative accuracy 
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9. SOME NUMERICAL ASPECTS 

Correlation Length Differences 

From tablesla and b, we obtain the relevant difference between 
the autocorrelation functions 

Since the higher harmonics have about the same order of magnitude for 
6g and Ag, we omitted them and plotted (fig. 2) the sum of the harmonics 

30 

n= 3 
2 un 

of degree variances for 6g and Ag. 
instead of  n=3 in the case of 6g.) 
is 

(Here again we could begin with n=l 
The difference in correlation length 

6R=9. - R = 10.5' - 13.5' = -3 0 4 4  6g 

(53) 

In this case3 the definition of correlation length as applied by Moritz 
(1980) is used. If we take the alternative definition of correlation 
length, which is the abscissa value of l/e of the variance, we obtain 

.5R = 13.5 0 - 17' = -3.5 0 . e 
(54) 

The latter definition, which has been taken from mechanics, is customarily 
used in statistics. 

The values in eqs. (53) and (54) are related to the original GEM 10 
data. 
lb, columns A '  and B') we obtain analogously 

If the degree variances are referred to a sphere of radius RE (table 

62 = 10.5' - 14.0' = -3.5 0 (55) 

3 VaniEek and Grafarend (1980) call this type of correlation length the 
"radius of statistical semi-independence," denoting it as "the distance at 
which the normalized covariance drops to 0.5." 
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1 

0.5 

1 If 

ellipsoidal 
cov (5s) - - 
COV (As) - 

Figure 2.--Partial sum of degree variances related to GEM 10 
data, showing the difference of correlation lengths 611 and 
6ge, respectively. 

and 

6Re = 14.0 - 17.0 -3.0'. ( 5 6 )  

Figure 3 represents the curves analogous to the sums from (52) for Ag 
and og related to the sphere. 

Actual Gravity Investigation 

Using realistic error covariances, Ihde (1980) has studied trancation 
errors for Stokes' and Vening-Meinesz's formulas. It should be pointed 
out that even though error covariances are supposed to be almost the 
same for 6g and Ag the covariances of the function themselves are, of 
course, different because the covariances of Ag contain the term 

- N 0.3086 N 
ah 

(57)  
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1 

0.5 

1 If 

'\ \ 
\ 

spherical 

COV (Ag) - COV(6g) - - 

Figure  3 . - - P a r t i a l  sums of degree va r i ances  r e l a t e d  t o  a sphere  of 
radius R E' 62 , respectively. 

showing the difference of correlation length 62 and 
e 

which is not found in the gravity disturbances. 
T=Ny has to be considered in addition to the covariance of the original 
function, Ag. 

Thus, the covariance of 

Covariance propagation then gives the transition 

explained in geodetic textbooks , e. g. , Moritz (1980). 
erical results related to degree variance models, see Becker (1980). ) 
Next we shall confine the discussion to error covariances that are used 
to obtain additional information about truncation errors associated with 
the 6g and Ag formulas, respectively. Formulas for geoid undulation and 
deflection of the plumb line will be considered. 

(For detailed num- 

The data presented in figures 2 and 3 can be interpreted in two ways. 
We can either consider the sums in table la and figure 2 as partial sums or 
as a band-limited part of the power spectrum. Moreover, we can consider 
them as the sums that correspond to autocovariance functions of an Earth 
model truncated at degree n=30, such that all harmonic coefficients for 
degrees n>30 vanish. In the latter case we have a non-negative or semi- 
positive definite function. To possess a unique inverse, C-' in eq. (51, 
- C must be regular. However, if some of the coefficients 91 (the degree 
variances) in eq. (17) vanish, the corresponding autocovariance matrix - C 
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will be singular. 
of C by building up C-'. 
Earfh models can also be handled. 

Moritz (1980) has discussed how to avoid the inversion 
Consequently, in principle, at least, truncated 

Test computations clearly reveal that the increase in correlation 

influence of remote zones in eq. (5).  
behavior of K(T, 6g) in comparison to K(T,Ag). (See again eq. ( 5 ) . )  The 
cross-covariance matrix K is found from covariance propagation. 
agrees with the truncation error 'investigation using the GEM 10 field. 

length associated with the transition from Ag to 6g does not mean a stronger 
This increase is compensated by the 

This fact 

Error covariances are well known as functions of the autocovariances 
of the function itself. 
Earth's surface, we cannot expect the same covariance function over the 
entire Earth. Moreover, surface gravity coverage of the Earth is quite 
irregular, especially at sea. 
average information by using the following error variances f o r  mean anomalies 
of blocks of different sizes (Ihde 1980). 

Since gravity is a nonstationary function at the 

Nevertheless, it makes sense to obtain some 

Table 2 shows the variances associated with smooth topography. Those 
for flat areas are given in parentheses. In comparison to these error 
variances the results expected from the GRAVSAT mission should have an 
accuracy of k 2 to k 5 mgal (corresponding to variances of 5 to 21 mga12), 
which are impressive (Douglas et al. 1980). 
an accuracy of about f 7 mgal for lo-by-lo mean gravity values. 
were obtained at sea from GEOS-3 altimetry. 

Moreover, Rapp (1979) reported 
The data 

Table 2.--Variance of gravity anomalies vs. block size 

Block size Error variance adopted 
Flat 

(mga12) ( mga12) 

5O x 5 O  1311 
lo x lo 777 (150) 
30' x 30' 535. (75) 
6' x 6' 106 (10) 
10 km x 10 km 89 (10) 
5 k m x 5 k m  22 (2) 
2 k m x 2 k m  1.4 (1) 

Even higher accuracy is expected from SEASAT altimeter data. 
an accuracy of k 5 mgal for SEASAT data, then this accuracy would compare 
favorably with the k 28 mgal obtained from table 2 for lo-by-lo mean 
values. Therefore, in view of the forthcoming new results it makes sense 
to assume an accuracy of about k 6 mgal or even better in all oceanic areas, 
i.e., for about 70 percent of the Earth's surface. Alternatively, an ac- 
curacy on the order of f 4 mgal or better can presumably be used after 1986 
if GRAVSAT has been launched. 

I f  we assume 

This latter estimate corresponds to the 
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5km-by-5km mean values given in table 2. 
progress'as well as the progress achieved during the last few years. 
The error estimates in table 2 can be considered as basically uncorrelated. 

This clearly shows the forthcoming 

Douglas et al. (1980) believe that higher accuracies are possible. 
Their general conclusion states: 
optimized 1 year low-low satellite mission could produce mean anomalies at 
the 1°-by-10 level to 1-mgal precision." 

"Thus it seems apparent that a suitably 

A preliminary estimate of the maximum density of gravity stations in the 
nearest neighborhood of the computational point is again obtained by applying 
Kaula's (1966) rule-of-thumb, assuming its validity up to very high har- 
monics. 
be useful for obtaining a preliminary estimate. 
deduced from Kaula's rule yields 

Even though this has never been verified, the assumption might 
Chovitz' s (1973) formula 

a = 0.05 m n ( 5 9 )  

to obtain the harmonic degree n for an expected 5-cm error truncation. 
Consequently, we obtain n = 1280. 
For 3 cm we obtain analogously 5!1. 
of about 3 and 4 km, respectively, in the nearest neighborhood of the 
station in order to,account for harmonics of degree 101280 and n >2133, 
respectively. 
continuation of gravity according to Bjerhammar' s concept has not been 
included yet. 
the.topography, it is difficult to give a generally valid estimate. 
the other hand, to establish a dense net within a small cap around the 
computational point is not a serious problem. 

This corresponds to 0014 or 8 : 4 .  
Therefore, we have to use a spacing 

In this spacing the station density for the downward 

Because the latter depends so strongly on the smoothness of 
On 

Douglas et al. (1980) based their accuracy estimate of truncated 
geoid heights on 

- 64 + - -  64 - 30 cm. 
n 180 

This corresponds t o  neglecting harmonics beyond n = 180. However, it 
does not fully account for mean anomalies in the 1°-by-10 blocks that also 
contain higher harmonics of various degrees. A reasonable estimate of the 
truncation effect might be obtained by considering that Douglas et al. 
(1980) used discrete gravity values at 0?5 spacing to estimate mean va1ue.s 
of lo blocks. Therefore, 
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could be more r e a l i s t i c ,  b u t  such a change from 30 cm t o  15 cm would not  
remarkably a f f e c t  t h e  aforementioned spacing i n  t h e  neighborhood cap. 

10. NUMERICAL INVESTIGATION 

Let us assume t h a t  t h e  term i n  eq. (57) ,  i . e . ,  

can be determined without  any s i g n i f i c a n t  e r r o r ,  because t h e  geoid undula- 
t i o n s  a r e  known t o  wi th in  an e r r o r  of <2 m ,  which . impl ies  t h a t  e r r o r s  i n  
eq.  (57) a r e  (1 mgal. Hence 6g and Ag a r e  obtained t o  t h e  same accuracy.  

The advantage of  u s ing  6g in s t ead  of Ag can then  be r e a d i l y  t e s t e d  f o r  
geoid undula t ions  and plumb l i n e  d e f l e c t i o n s  us ing  t h e  s tandard  dev ia t ions  

0 
i 

where S(+) = Stokes’  func t ion ,  
H($) = Hot ine’s  func t ion ,  
o denotes  t h e  i - t h  r i n g  of width (Jli2 - Qi1) around t h e  p o i n t  where N i s  i 

computed, 
As i  i s  t h e  a rea  of oi ,  and 
m(xg) and m(8g) a r e  t h e  e r r o r s  of t h e  mean va lues  of g r a v i t y  anomaly 

and g r a v i t y  d i s tu rbance ,  respec t ive ly ;  used i n  oi. 
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If the ring oi is replaced by compartments we obtain 

where As. now denotes the area of the j-th compartment at "mean" distance 
9 from the point of calculation. J 

Utilizing the aforementioned assumption 

2 -  2 m ( A g )  m (G) 

we o b t a i n  the r a t i o  

To determine the error contribution caused by the zone outside a cap of 
radius 9, (we may assume that within the cap 6g and Ag are perfectly known) 
we can restrict the summation in eqs. (62) to' (65) to $ > $ o .  
shows the ratio for 0.05' - < (I < 40' in eq. (67). 

Figure 4 

.When the same reasoning is applied for computing the deflections of the 
vertical we obtain the following formulas which are analogous to eqs. (66) 
and (67). 

O i  
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or 

1 I I I I D 

0 lo" 20" 30" 40" $0 

Figure 4.--Error influence of  remote zones outside of  a 
cap of radius Qo,where J1, varies between the limits 
o f  Of05 and 40°. 

with S' : dS/d+ and H' : dH/dQ. Therefore, the rat io  
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which i s  analogous t o  eq.  ( 6 7 ) ,  can be in t roduced .  
r a t i o  f o r  0 . 0 5 O  < Q0 < 40° i n  eq.  (72) by a broken l i n e .  

given i n  eq.  ( 6 6 )  t h e  e r r o r  i n f luence  of t h e  remote zones Q > 50' 
is smal le r  f o r  Hotine-type i n t e g r a l s  compared t o  S tokes '  and Vening- 
Meinesz's i n t e g r a l s .  

F igure  4 shows t h e  

I n  an e a r l i e r  s tudy  (Groten 1980),we showed t h a t  wi th  t h e  assumption 

Since S tokes '  equa t ion  reads 

where s i s  t h e  u n i t  sphere and s '  i s  t h e  t e r r e s t r i a l  sphere of r ad ius  
r = R ,  we can r e a d i l y  eva lua te  eqs .  ( 6 2 )  and ( 6 4 )  by summing up over  t h e  
u n i t  sphere.  We can l ikewise  do t h e  same f o r  t h e  Hotine i n t e g r a l .  

Using accuracy e s t ima tes  f o r  lo-by-lo mean anomalies,  a s  found by va r ious  
au tho r s ,  we o b t a i n  t h e  r e s u l t s  f o r  geoida l  he igh t  accu rac i e s  shown i n  
t a b l e  3. 

Table 3.--Accuracies f o r  geoid he ight  and d e f l e c t i o n  of t h e  v e r t i c a l  
t o  + 2 ,  f 4 ,  and ,+ 6 mgal f o r  mean g r a v i t y  i n  lo-by- lo  blocks 

-- 
26 

+16 
211 

+32 
+22 

f0'!07 
f0'!06 

+0'!13 
20'! 13 

248 +Of! 18 
+33 +0'!20 
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The values in table 3 were evaluated by assuming that perfect gravity 
information is available in a cap of 1' radius around a station. 
these estimates are slightly optimistic. However, Groten and Moritz (1964) 
have shown how the errors within a cap of radius $o could be included. By 
applying this method, slightly higher values are found for m(N) and m(5,q). 
Moreover, the results in table 3 are too optimistic (as far as absolute 
geoid heights and deflections are concerned) for the following reasons: 
The d.istance between the GRAVSAT satellite pair is selected in such a way 
that maximum resolution is achieved for wavelengths having about 1' sep- 
arations. This means that the low harmonics (as well as substantially 
higher harmonics) are not recovered to the same extent by GRAVSAT. 
fore, investigations of accuracy, such as the study by Douglas et al. (1980), 
tend to overestimate slightly the accuracy of GRAVSAT results. 
GRAVSAT system can be compared to a gravity gradiometer, which is sensitive 
to high harmonics, being tuned to a specific wavelength of the gravity 
field directly related to the separation of the satellite pair.) 
accounting for accuracies on the order of k 6 mgals or better for lo-by-lo 
mean gravity values, which were obtained from satellite altimetry, we 
may safely consider results of k 2 to 2 4 mgal from GRAVSAT as realistic. 

Therefore, 

There- 

(The 

By 

In addition, the results in table 3 show that the Hotine integral 
solution gives more favorable results. This is primarily important for 
deflections of the vertical whenever a cap of radius JIo is covered by a 
dense terrestrial gravity field, as in the United States, where GRAVSAT 
data plus terrestrial data are combined in one solution. 

As far as deflections of the vertical are concerned (which lcse their 
previous importance) the superiority of the Hotine integral is quite 
remarkable for JIo >> 5O, as shown by Groten. However, for values of 
$0 < lo the superiority is no longer as significant as for larger values 
of 9,. 
whereas,when GRAVSAT-type data are available (i.e., with a gooC gravity 
field for harmonics of a high degree) this effect will still be as important 
as before. 
amount of  reliable gravity material at hand, the superiority of the Hotine 
integral is dominant for the computation of the deflections of the 
vertical, as shown in figure 4. For example, figure 4 shows that the error 
budget of the remote zones for JIo > 20' (which seems to be a realistic 
estimate for the United States and parts of western Europe) is almost 
three times larger when (5,q) is computed with the Vening-Meinesz method 
than computations made with the corresponding Hotine integral. 

This means that the contribution of the remote zones is prominent, 

Contrary to this, in the present situation with only a small 

Since about two-thirds of the Earth are covered by the oceans and are 
satisfactorily surveyed by satellite altimetry, table 2 (case c) illustrates 
current achievable limits in terms of relative geoid heights. 
the strong influence in the neighborhood zone, it is well known that the 
computation of (5,q) relies upon combinations of terrestrial and satellite data 

Because of 

Therefore, a more detailed look at this problem is necessary. 
the two cases: 
to k 1 mgal and k 3 mgal, respectively, are shown in table 4. 

Consider 
JI, = 6O and JI, = loo. The accuracies of (5,q)) corresponding 

The results in 
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columns 4 and 5 p e r t a i n  t o  a zero-er ror  con t r ibu t ion  from t h e  neighborhood 
a rea  of r ad ius  JIo around t h e  s t a t i o n  where (5,q) i s  eva lua ted .  

Table 4. -- E r r o r  con t r ibu t ions  f o r  computing d e f l e c t i o n s  of t h e  v e r t i c a l  
using Vening-Meinesz' s and Hotine'  s equat ions  

1 2 3 4 5 6 7 
To ta l  m ( 5 , q )  f o r  JIO=6O 
lOkm x lOkm 2km x 2km 

m ( 5 , r l )  F l a t  to -  Regular t o -  

m(Ag) m(6g) J l O = 6 O  JIo=lOo pography PograPhY 
Case (mgal) (mgal) ( a r c  sec )  ( a r c  sec )  ( a r c  sec) ( a r c  s e c )  

a +2 -- kO.01 t o .  01 t o .  23 fO. 02 
-- k2 kO.01 20.01 20.23 kO.02 

b 24 -- 20.03 k0. 02 k0.23 k0. 03 

-- 24 io. 02 kO.01 k0. 23 k0. 02 

C 26 -- kO .05 +O .03 20.24 20.04 
-- f6 20.03 to. 02 f0.23 , f0 .03 

When we cons ider  t h e  e r r o r  var iances  adopted a t  p r e s e n t  f o r  t e r r e s t r i a l  
da t a  we o b t a i n  t h e  fol lowing reasonable  e s t ima tes :  
( a s  i n  some European c o u n t r i e s )  up t o  a 6 '-by-6'  spacing ( a s  i n  p a r t  of t h e  
Federa l  Republic of Germany), va r i ances  range between 100 mga12 and 1 mga12. 
When t h e s e  e r r o r  con t r ibu t ions  a r e  added t o  t h e  r e s u l t s  shown i n  t a b l e  4 ,  
columns 4 and 5 ,  we o b t a i n  t h e  r e s u l t s  shown i n  columns 6 and 7 .  The in -  
nermost cap ( n e a r e s t  neighborhood of t h e  s t a t i o n )  of r ad ius  t)o = 5 km i s  
aga in  considered a s  being e r r o r - f r e e  because t h i s  a r ea  i s  u s u a l l y  covered by 
an extremely dense local gravimetric survey. 

f o r  a 2km- by-2km spacing 

I t  i s  r e a l i z e d  t h a t  t he  s u p e r i o r i t y  of t h e  H'  ke rne l  over  t h e  S '  kerne l  
i s  r e l a t i v e l y  small  i n  t h e  a rea  of JI 55 ' .  If we assume i n  t a b l e  4 t h a t  
m(Ag) < m(6g), we may compare m(Ag) i n  case  a wi th  m(6g) i n  cases  b o r  c .  

The e f f o r t  necessary  t o  o b t a i n  p r e c i s e  d e f l e c t i o n s  of t h e  v e r t i c a l  i s  
r e a d i l y  seen  i n  t a b l e  4. 
even f o r  t h e  Hotine i n t e g r a l  i s  shown i n  t a b l e  5 ,  where 

The s t r o n g  inf luence  of t h e  s t a t i o n  neighborhood 
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J’ = roo ( H ’ 1 2  sin J, dJ, 

U 

is listed for 0005 2 JI 5 10’. 
for the integral 

For comparison, the corresponding values 

J =J’”” H2 sin JI dJI 
n are also listed. 

Table 5. --Error integrals of  the derivative of Hotine ’ s 
functional derivative and of the function itself 

U J’ J 

10 48.0418 3.2136 
(degrees) 

6 
5 
4 
3 
1.5 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0 . 4  
0 . 3  
0.2 
0 .1  
0.05 

150.4540 
223.4276 
360.1944 
660.7612 

2774.3723 
6347.7864 
7863.9416 
9982.8535 

13083.0679 
17868.7449 
25821.4937 
40474.9585 
72207.7578 

163011.7637 
654299.3984 

2621734.5937 

4.5638 
5.0318 
5.7703 
6.6893 
9.0620 

10.5281 
10.9170 
11.3550 
11.8556 
12.4384 
13.1345 
13.9822 
15.0957 
16.6720 
19.3981 
22.1604 

It seems appropriate to supplement the results in table 3 (where much 
terrestrial survey work is involved in order to fill up the innermost zone 
by a perfect gravity survey) by a less challenging effort where a station 
spacing of the terrestrial survey is supposed t o  be 2 km within a ring of 
003 around the station. 
is supposed to be perfect. 
and 22 mgal, respectively. 

For JI < 0005 the knowledge of the gravity field 
For JI > 0?3 we anticipate an accuracy of  fl mgal 
The results are shown in table 6 .  
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Table 6. --Accuracies of geoid undulations 

1 2 3 4 .  5 6 

Case Flat Regular Flat Regular 
*>0?3 0?05 J, 0?3 Total 

topo- topo- topo- topo- 
W P h Y  V P h Y  graphy graphy 

(cm) (4 (4 (4 (4 
a k9.0 20.4 k0.4 k9.0 25.0 
b k18.0 k0.4 k0.4 k18.0 k18.0 
C 26.7 k0.4 k0.4 k6.8 46.8 
d 213.5 k0.4 20 .4  k13.5 213.5 

Case a denotes an accuracy af k 1 mgal for JI > 003. 
accuracy k 2 mgal for $ > 0?3 in the Stokes approach. 
to the same accuracies using the Hotine integrals. 
heights are, of course, directly obtained from the disturbing potential. 

Case b denotes an 
Cases c and d refer 

In reality, geoid 

Table 7. --Accuracies of the deflections of the vertical 

$>O? 3 .0?05 i J, s 0?3 Total 
Case (arc sec) Flat Regular Flat Regular 

topo- topo- topo- topo- 
graphy W P h Y  P P h Y  graphy 
(arc sec) (arc sec) (arc sec) (arc sec) 

a 20.11 20.02 20.02 20.11 +, 0.11 
b i .22 2 .02 i .02 t .22 2.22 
C k .ll k .02 i .02 4 .ll 2.11 
d k .22 k .02 k .02 4 .22 2.22 

The accuracies in tables 6 and 7 refer to absolute geoid heights and 
deflections of the vertical. It is well known from the principle of 
astrogravimetric leveling that the remote zone effects are cancelled 
in determinations of relative geoid undulations. 
is obtained when we assume that for station distances of d 5 100 km the 
effect of the zones at a distance of D 2 10d 5 loo is cancelled. 
Hotine integral for relative geoid undulations we obtain a reduction of 
11 percent. 
Consequently, in table 6 we obtain an accuracy of about k 7 cm instead of 
2 9.0 cm and about k 6 cm instead of 6.8 cm. The 
f 18.0-cm entry would decrease to k 15 cm, and from k .13.5 cm it would drop 
to k 12 cm. 
level in gravity on the order of k 1 mgal or k 2 mgal. 

A conservative estimate 

Using the 

By using the Stokes solution we obtain a reduction of 20 percent. 

(See columns 2 and 6.) 

These results reveal the importance of having an accuracy 
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Consequently, by using GRAVSAT data with an accuracy of k 1 or: +_ 2 mgel, 
supplemented by a local terrestrial gravity survey, we are able to deter- 
mine relative geoid heights to an accuracy of ? 4 to ? 5 cm. 
heights are found with slightly lower accuracy, on the order of ? 5 to ? 7 cm. 
However, atmospheric uncertainty and the zero-order uncertainty inherent 
in present GM values must be added. 
of GRAVSAT) we are obtaining relative geoid heights of slightly lower 
accuracy in well - .  surveyed areas, i.e., around f 10 cm, whereas absolute 
geoid heights are still affected by uncertainties of at least ? 50 cm to 
k 60 cm. This is readily seen by replacing the gravity variances used in 
tables 3 to 7 with those of the aforementioned mean anomaly variances for 
1'-by-1' blocks. 

Absolute geoid 

In the meantime (prior to the launch 

The method discussed here is based on several hypotheses that were 
mainly discussed by Groten and Moritz (1964) .  
study in a slightly different way. 
pessimistic estimates for accuracies of N and (5,rl). 
estimates should be considered as comparative, in general, rather than 
absolute. 

It was applied to this 
This should lead to only slightly 

Consequently, these 

From the experience of  dealing with downward continuation of Ag we may 
consider that an adequately surveyed cap of 10-km radius is sufficient 
for continuation of 6g and Ag downward to a reasonable Bjerhammar sphere. 
Therefore, a neighborhood zone of radius $o = 0?4 with a dense gravity 
field is considered to be sufficient, in general, if the aim is to attain 
the results shown in tables 6 and 7. 

A Remark on Series Representations 

By using Kaula's rule of  thumb, where the degree variances of the geo- 
potential coefficients behave like 10-5/n2, together with formula (31a) 
of Molodenskii et al. (1962, p. 166), 

(The previous quantity $is now identified as the degree variance.) 
realize that for n + 00 

We 

-5 2 Moreover, by using 10 
and bn(Ag) tend to be constant for lar er values of n. 
neither the series for Ag nor og nor ( ! ,q) shouldconvergeunder these 
assumptions. 

/n., it is seen that, because of  eq. (20), on (e) 
In other words, 
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Consequently, for small values of $o we cannot expect to obtain much 
information from eq. (31) and similar equations. The utilization of 
integrals of the type given in eq. (12) seems to be more efficient when 
we start from standard deviations of Ag or 6g themselves. 

On the other hand, this method was thoroughly studied by Jekeli (1979) 
and others,so that any verification using Ag, and 6gn is no longer of in- 
terest. 
layer method, as shown in appendix 3 ,  is of interest. 

However, the application of the series approach to the single 

11. DISCUSSION 

Several methods are available which, if properly applied, yield accuracies 
corresponding to the accuracy of results that may be expected from GRAVSAT 
and the Global Positioning System satellites', i.e., about 2 1 or 2 2 mgals 
and 25 cm in geoid height. 
differences are considered, then the correction for atmospheric uncertain- 
ties as well as the uncertainties inherent in the vertical datums and 
in GM (causing an error, 6NO) do not play a significant role. 
GPS at hand, a very high accuracy of 2 1 cm or so is primarily expected for 
distances 1ess.than 100 km. 
certainly be neglected almost everywhere and in almost all cases. 

If relative quantities such as geoid height 

With 

I n  those cases the atmospheric effects could 

The comparison of various methods dealt mainly with 6g versus Ag. One 
principal part of the investigation concerned the truncation error that 
related to various approximations and representations of the gravity field. 
Now the error covariance depends basically on the covariance of the function 
itself (Heiskanen and Morit.2 1967, p. 268). 
represented as a product a*b, where a is basically a function of the error 
variances and 

Let the truncation error be 

It is realized that with kernel functions k the error of truncation e 
depends on the total power in Ag, 6g., and p 
parts of the spectrum. 
frequency band. 

rather than on specific 
Consequently, it does not depend on a specific 

When Hotine's function H is compared with Stokes' function and when the 
corresponding two approaches 
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are compared with each other we apply the identity 

-.-- - 1  (n-1) (n+l) 
(n+l) (n-1) 

where the first factor is applied to the observed gravity; whereas the 
second is applied to a kernel, such as H, which is independent of the data. 
In the case of collocation, the square of those factors must be considered. 

As far as the downward continuation of p ,  6g, and Ag is concerned we have 
discussed various aspects for obtaining p ,  &g, and Ag at different levels. 
With 6g and Ag the interior potential should be clearly distinguished from 
the analytical continuation of the external potential down into the ter- 
restrial masses. Since 

lim T(r) = 0 and lim N(r) = 0 
r + @  r + a  

we have, in general, increased separation between level surface W = 
constant and the corresponding surfaces U = constant with increasing depth 
below the Earth's surface for the analytical continuation of the external 
potential. Thus, N also increases. Consequently, the analytical continu- 
ation 6g = -aT/ar is assumed to be simpler, in general, than the contima- 
tion of.Ag at greater depth. 

As soon as GPS-type satellites are applied routinely for determining 
station location, gravity disturbances 6g are expected to be fully equivalent 
to gravity anomalies Ag. If a satellite equipped with a high resolution sea 
altimeter is launched, 6g will be more appropriate for geodetic purposes, in 
general, than Ag. With GRAVSAT data at hand, local and regional terrestrial 
data can be used for densifying satellite gravity in order to determine local 
geodetic parameters such as (5,rl) whenever necessary. 

When quantities pertaining to physical geodesy are used in combination 
with, or for comparison of, VLBI data, we mainly need relative geoid un- 
dulations. 
significant role in the definition of a precise geoid. Consequently, as 
soon as better gravity data are available, an accuracy of k 5 cm in relative 
geoid undulations will not be problematic. 
however, it is still difficult to achieve an accuracy better than +30 cm, 
and it will be difficult to achieve an accuracy better than + 20 cm even 
with better gravity data at hand for the reasons stated. 

In that case, the uncertainties in GM do not play a 

In the case of absolute values, 

This study aimed at errors in gravity less than k0.006 mga1,for each 

= RAg /(n-1) = R6gn/(n+1) that the determination of relative geoid 
individual error source. 
T 
hgights getween stations not far apart from each other is the least 
problematic. 

It is a consequence of the relation 

Only part of the difficulties associated with a precise 
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definition of the geoid is dodged by using the quasi-geoid. However, be- 
cause of the uncertainties inherent in the orthometric heights (caused by 
well-known hypotheses used in computing orthometric heights) it will be 
necessary to use normal heights and the quasi-geoid whenever ultimate 
a'ccuracy is obtained. 
seems to be reasonable in view of the corresponding accuracy in geoid 
heights orquasi-geoid heights obtained from 

The basic accuracy limit of about 40 t o  50 pgal 

For n = 2 we get 

6N n = 30 cm for 6(Ag) = 0.05 mgal 

by applying it to absolute geoid heights. 
south and east-west limits of the United States we have approximately 
M 60' and A@ 26O which yields 

Taking into account the north- 

6N = 5 cm 

for the same value of 6(Ag). 
greater than 10 pgal in this study is the atmospheric correction 
within the United States, and the uncertainties could be assumed to 
be smaller than about 2 10 pgal (the assumption of an uncertainty of 
f 50 pgal or 2 40 pgal in atmospheric correction is generally related 
to global phenomena), we could even assume 

Since the main source of uncertainty 

6N = +1 cm n -  

corresponding to 6(Ag) of f 10 pgal. On the other hand, we also have to 
account for the other error sources in this case. Thus 2 3 cm seems 
to be the highest accuracy achievable in relative determination of geoid 
height for the present "theory." 
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In a number of publications it has been shown that if the same hypotheses 
are used in the evaluation of orthometric and geoid heights the errors 
inherent in the hypotheses cancel (t0.a first-order approximation) each 
other. In reality, h and N are often taken from different sources. There- 
fore, in most cases it is safer to use height anomalies 5 and normal heights 
where the well-known relation applies 

where and 
plumb lines between the Earth's surface (geoid) and telluroid (ellipsoid), 
respectively. 

ere mean values of g and y, which are taken along the 

Thus, if GRAVSAT provides the disturbing potential, yielding an 
accuracy of f 30 cm or better in geoid height based on harmonics up 
to degree ~ 1 8 0 ,  we can solve for higher harmonics of geoid heights 
using local gravity with an accuracy of about 2 5 cm. 

12. CONCLUSION 

Theoretically, it has been shown that we could obtain accuracies of about 
f 3 to f 4 cm for relative geoid heights. 
prevail that cannot be solved even if a f 1 mgal gravity field becomes 
available from GRAVSAT. For GRAVSAT data (with an accuracy of 21 mgal or 
f 2 mgal) we can obtain, in combination with local gravity surveys (within 
the neighboring zone), relative geoid heights over distances of 2 100 km 
or so with an accuracy of 2 5 cm. Also deflections of the vertical that 
fulfill present requirements, i.e., with an accuracy of better than fr 0'!3, 
can be obtained. Using Hotine's integrals, the results are slightly better 
than those obtained with Stokes' integrals. 

At higher accuracies, uncertainties 
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-- APPENDIX A.---DERIVATIONS OF HOTINE'S H(r,$) IN ITS GENERALIZED FORM 

The first d e r i v a t i v e  of eq. ( 2 )  y i e l d s  

r 1 

with  k = R / r .  Further ,  

For k = 1 ke ob ta in  

2 Q = 4 s i n  ($/2).  

.Noreover , 
2s in  2 ($/2) = 1 - cos 1J, 

and 

sin$ = 2 s i n  ($) cos ($). 
Consequently, 

2 s in  (2) 2 + 1 
(A61 

which a f t e r  a simple t ransformation y i e l d s  (Groten 1979) 
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The second d e r i v a t i v e  of eq. (2 )  is  r e a d i l y  der ived  from t h e  f i r s t  d e r i v a t i v e  

us ing 

w i t h  

or 

2 

2 '  
and 

+ 1 )  2 sin 9 (k@ 
+ 

( a l l 2  + k - cos$) 

2 
C O S  w (1-cos $1 - s i n  $ 

(1 - cos 9) 
- - 

2 

s i n  2 I$ 

(1 - cos $1 2 

cos 8 - - - 
(1 - cos $1 

( A l l )  

iA12) 

(A131 
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Consequently, we f i n a l l y  obtain from eq. (A8)  

n S ko-1/2sin $ + s i n  J, cos $ - cos $ + 

+ k2Q-3/2sin2 $ - k@ -1/2 

+ k - COS ij @‘I2 + k - cos 1~ 

2 s i n  Q - cos $ 
2 + 

(1 - cos $) (1 - cos 9 )  
( ~ 1 4  

For k = 1 we end up w i t h .  the corresponding formula of Groten’s( l979) ,  i.e., 

2 
using = I + 11 + 111 2 :+ 

where I = -2cos 9 , 6s in2  ;I, 
@3/2 @5/2 ’ 

1 - cos $ + 

s i n  JI + 
+ (  1 - cos $ + Q 
2 c o s $  4 s i n  2 J, 

cp a2 
111 = - 

( A l i )  

(A181 

(A19 
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'low s t r a i g h t f o r w a r d  a l g e b r a i c  manipula t ion  l e a d s  t o  

6 s i n  2 1) 

+ 
8 s i n  3(.j1/2) 32sin5($/2) 

-')cos * I =  

1 
2 

+ 1 = -  
s i n 2  (*/2) 2 s i n  ($/2) 

1 - 1 -  1 
2 

2 s i n  ($/2) 
- - 

9 

(AZO) 

n n 

2 2 2 4 x = -2s in  ($/2)cos @ = - 2 s i n  ( $ / 2 ) c o s  ($ /2)  +- 2 s i n  ($/2) 1 

2 
= 2 s i n  $I c o s  ( $ / 2 )  = Osin ($ /2)  c o s  ($/?) "4 
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we o b t a i n  
4 

whence from eq. (A161 we o b t a i n  

or 

which is  i d e n t i c a l - t o  eq. (10) taken from Groten (1979) .  Consequently,  t h e  

d e r i v a t i o n s  are c o r r e c t .  

48 



APPENDIX B. - -DISCUSSION OF DENSITY MODEL 

S t a r t i n g  from t h e  well-known equat ion  

W 

n 2n + 1 T(P) = 41T GR 'J 
n=o 

where G i s  the. Newtonian g r a v i t a t i o n a l  c o n s t a n t .  We o b t a i n  t h e  d i s t u r b i n g  

p o t e n t i a l  a t  P ( r )  caused by a s i n g l e  l a y e r  d e n s i t y  on a sphere  of r a d i u s  

r = R  having a d e n s i t y  of 

= con. 

This  s p h e r i c a l  harmonics r e p r e s e n t a t i o n  i s  analogous t o  eq. ( 4 3 ) .  Differen-  

t i a t i o n  then  l e a d s  t o  (remembering t h e  d i s c o n t i n u i t y  of d e r i v a t i v e s  f o r  R=r):  

C r  us ing  

w e  o b t a i n  

The Neumannian problem i s  solved by Heiskanen and Moritz (1967,  

p. 36)  
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For r=R w e  o b t a i n  from eq. (20)  

R8gn 
Tn(R) = - n + l  

and, ana logous ly ,  

RAgn 
Tn(R) = - n - 1  

Using eqs .  (25) and ( 3 8 )  w e  end up w i t h  

= n + -  6g / ( n + l ) ,  'n ( :) n 

With n + Q) we o b t a i n  

Consequently, '  f o r  h igh  v a l u e s  of n t h e r e  is no b a s i c  d i f f e r e n c e  between 

6gn, Og and 1",. For lower n, IJ could be  t r e a t e d  as a high-pass filtered 

6gn,whereas Ag i s  b a s i c a l l y  cons idered  as a high-pass f i l t e r e d  v e r s i o n  of 
n n 

n 

' .  n 

f = R/(n ++) 
can b e  cons idered  as a low-pass f i l t e r  f u n c t i o n  t o  be a p p l i e d  t o  pn i n  o r d e r  

t o  o b t a i n  Tn. 

t h e  d e v i a t i o n s  from 1 f o r  n 5 30. Formulas ( 3 5 )  and ( 3 8 )  t a k e  i n t o  account  

t h e  well-known d i s c o n t i n u i t y  of s i n g l e  l a y e r  p o t e n t i a l s  i n  e x t e r n a l  space.  

(For more de t a i l s  see O r l i n  (19591.1 

The f i l t e r  f u n c t i o n s  are i l l u s t r a t e d  i n  f i g u r e  5 .  They r e v e a l  
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1 .o 

0.5 

0 

(n + 1/z)/(n + 1) 

n 
10 20 30 

' F igu re  5 . - -F i l te r  func t ions  involved i n  on r ep resen ta t ions .  

From these  r e s u l t s  w e  conclude t h a t  t h c  use  of p i s  nea r ly  equiva len t  t o  

t h e  app l i ca t ion  of 6g. 

replaced by a r igorous  app l i ca t ion  of a s i n g l e  l a y e r  dens i ty  on an e l l i p s o i d ,  

o r  t he  sphere of r ad ius  r = R can be considered as a Bjerhammar sphere,  as 

def ined i n  Moritz (1980, p .  6 9 ) .  

so lu t ion  i n  terms of t h e  Runge-Krarup theorem (Moritz 1 9 8 0 ,  p .  6 4 ) .  

Moreover, w e  can s p l i t  o f f  the  f i r s t  two harmonics i n  eq. ( 4 3 1 ,  l ead ing  t o  

The s p h e r i c a l  approximation u t i l i z e d  above can be 

The l a t t e r  case  then r ep resen t s  a r igorous  

i t s  s p h e r i c a l  harmonic r ep resen ta t ion  

a n  (E) n+l ' .  
m 

T(P) = 4.rrGRx 2 n + 1  r n= 2 

Because, i n  eq . ( 4 3 )  , 

1 = R-T (f) n+l P*(cos$) 
0 

R 

( A 3 6 )  ' 

( ~ 3 7 )  
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we g e t  f o r  r=R w i t h  p 3 R  s i n  ($ /2 )  

= R-' (f P (cos$) + 1 + cos$ 
n 2 

o r  

1 
- n  R 

CQ 

- =  R'l P ( C O S $ )  = - - R-l(l+cos 9). 
2 

R' 
(A391 

The term (1 + cos$) is  p o s i t i v e  f o r  a l l  values of  $. By s u b t r a c t i n g  i t  from' 

1/2 we o b t a i n  a f u n c t i o n  112' .  

? loreover ,  from t h e  s p h e r i c a l  harmonics r e p r e s e n t a t i o n  of (43) we g e t  

t h e  two terms miss ing  i n  i t s  last form, i . e . ,  

1 = 1 + - cos$ 3 
n=O 

which a g a i n  i s  positive definite. 

from t h e  o r i g i n a l  form 112, as shown in eq. (A39), w e  o b t a i n  a k e r n e l  f u n c t i o n  

By subtracting the two f i r s t  harmonics 

which co r re sponds  t o  t h e  modif ied "Hotine f u n c t i o n "  (Groten 1979) o r  

S tokes '  f u n c t i o n .  

It i s  i n t e r e s t i n g  t o  see t h a t  even i f  0 ( n  = 0 , l )  is nonvanishing n 
= TI = 0. Consequently t h e  reasoning u s u a l l y  

0 the p o t e n t i a l  T will have T 

a p p l i e d  to  Stokes '  f u n c t i o n  can now be  a p p l i e d  t o  t h e  s i n g l e  l a y e r  i n t e g r a l  

formula.  We u s e  

c o s  @ =  cos8 case"+ s i n 3  s i n e '  cos ( A - A ' )  (A411 

f o r  t h e  p o i n t  P (3 ,X)  and t h e  s u r f a c e  element d s  ( $ ' , A 1 )  w i t h  formulas analogous 

t o  t h o s e  found f o r  S tokes '  f u n c t i o n  i n  i ieiskanen and N o r i t z  (1967, p. 99) .  

By i n s p e c t i n g  119,' i t  i s  r e a l i z e d  t h a t  t h i s  f u n c t i o n  d e v i a t e s  from 112 
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s a i n l y  f o r  small v a l u e s  of 9. 
Ag 

l a t e d  t o  t h e  GEN 10 model. These are l i s t e d  i n  t a b l e  8. 

When w e  r e f e r  pIl t o  t h e  same s p h e r e  , to  which 

i s  r e l a t e d  w e  can compute t h e  corresponding degree  v a r i a n c e s  of pn re- n 

A comparison of degree  v a r i a n c e s  of 1.1, and 6gn shows a c l o s e  connect ion as 

The reason w e  a r e  i n  f a v o r  of handl ing t h e  term a consequence of eq.  (A34). 

i n  a c lass ical  Neumannian form l i e s  i n  t h e  f a c t  t h a t  t h e  uniqueness  and 

e x i s t e n c e  of t h i s  boundary v a l u e  problem have been w e l l  i n v e s t i g a t e d .  The  

problems of downward c o n t i n u a t i o n  of q u a n t i t i e s  down t o  t h e  Bjerhammar 

sphere  a s s o c i a t e d  w i t h  smoothins and,  consequent ly ,  wi th  nonuniqueness do 

e x i s t .  

The q u e s t i o n  of whether t h e  upward c o n t i n u a t i o n  up t o  a . B r i l l o u i n  sphere  

i s  p r e f e r r e d  and whether t h e  complete f i e l d  i t s e l f  could t h e n  be cont inued 

downward from a B r i l l o u i n  sphere  t o ' a  Bjerhammar sphere  cannot be answered 

i n  t h i s  r e p o r t .  

cal  i n v e s t i g a t i o n s .  The r e a l l y  v a l u a b l e  i n v e s t i g a t i o n s  concerning t h e  

S r i l l o u i n  approach were of a t h e o r e t i c a l  n a t u r e .  Je f f reys '  argument, 

"when i n , d o u b t ,  smooth'' (Moritz 1980, p. 270),  i s  c e r t a i n l y  c o r r e c t ,  bu t  
smoothed da ta  are no longer  precise data! Thus, upward and downward cont in-  

ua t ions  a p p l i e d  t o g e t h e r  involve  double  smoothing. 

I t  c e r t a i n l y  has  advantages,  b u t  t h e r e  have been t o o  f e w  numeri- 

Table  8.--Degree v a r i a n c e s  of p and 6g r e l a t e d  t o  a sphere  of mean 
E a r t h  r a d i u s  

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
13 
14  
15 
1 6  

103. a 
44.8 
39.5 
32.6 
30.5 
17.3 
1 6 . 1  
13.6 
9.0 
4.8 
8 . 1  
4 .4  
3.8 
3 .3  

135.6 
55.3 
47.0 
37.8 
34.7 
19.3 
17.8 
1 4 . 9  

9 .8  
5.2 

4 . 7  
4.0 
3.5 

8.7 

1 7  
18 
19  
20 
2 1  
22 
23 
24 
25 
26  
27 
28 
29 
30 

2.6 
3.8 
2.5 
2.4 
2 . 2  
2 . 1  
0.6 
0.5 
0.8 
0.0 
0.7 
1.1 
0.7 
1 . 4  

2.8 
4.0 
2.6 
2 .6  
2 :3 
2 . 2  
0.6 
0.5 
0.8 
0.0 
0.7 
1.2 
0.7 
1.5 
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As f a r  as t h e  Bjerhammar s p h e r e  is  concerned, i t  h a s  been d e f i n e d  by 

v a r i o u s  a u t h o r s  (Mori tz  1980, pp. 69,  181) .  

o b t a i n  vn(Rl) from gn(R2) and v i c e  v e r s a .  

y i e l d s  

When t h e  r a d i u s  i s  v a r i e d  w e  

Using eq.  (A27) i t  i m e d i a t e l y  

0 

(442) 

When t h e  analogous r eason ing  i s  a p p l i e d  t o  6gn o r  Agn we have 

t h e  exponent i n s t e a d  of (n+l).  Th i s  f o l l o w s  from d i f f e r e n t i a t i n g  the  formula uhict 

(n+2) i n  

so lves  t h e  D i r i c h l e t  boundary v a l u e  problem. 

If the spherical treatment discussed above is considered as an approximation 

of t h e  e l l i p s o i d a l  problem t h e n ,  of c o u r s e ,  e l l i p s o i d a l  c o r r e c t i o n s  i n  t h e i r  

conven t iona l  form ( N o r i t z  1980, p. 327) have t o  be  a p p l i e d .  

When t h e  same problems are cons ide red  i n  terms of c o l l o c a t i o n  w e  may s t a r t  

from an au tocova r i ance  model of t h e  d i s t u r b i n g  p o t e n t i a l .  

eq.  (-427) i n  symbolic form 

By v r i t i n g  

T = IIJ 

with the  operator 

(A43) 

be ing  a p p l i e d  t o  p i R )  w e  have a unique r e l a t i o n  between 1.1 and T i n  c o n t r a s t  t o  

t h e  g e n e r a l  problem ( p o t e n t i a l  - d e n s i t y )  where ( p o t e n t i a l  * d e n s i t y )  i s  w e l l  

known t o  be ambiguous, i n  g e n e r a l .  Without going i n t o  d e t a i l s  we can obtain 
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= I'lT (X4L;) 

where 1-1 i s  the inverse of I ,  the autocovariance being immediately obta ined  

by u s i n g ,  e .g . ,  eq. (A331 , w i t h  a , (p> ,  t h e  degree  v a r i a n c e s  of "densi'ty" L, 

being 

Analogous covar iance  propagat ion can be used f o r  t r a n s i t i o n s  p -f Ag, p A Sg,  

etc.  The cross -covar iances  5 are,  i n  g e n e r a l ,  found from 

- K = I C  - (A461  

where I is t h e  o p e r a t o r  r e l a t i n g  two f u n c t i o n s ,  such as T and IL, C being  

t h e  au tocovar iance  m a t r i x  of t h e  l a t t e r  f u n c t i o n .  The a p p r o p r i a t e  frame work 

i n  terms of s t o c h a s t i c  processes  on a s p h e r e  i s  given i n  Grafarend (1976).  

Hotine (1969, p. 346) used t h e  r e l a t i o n  

i n  o r d e r  t o  t ransform a formula almost  i d e n t i c a l  w i t h  our  r e l a t i o n  (A321 i n t o  

an 

reads 

i n t e g r a l  formula,enciing up wi th  a r e l a t i o n  which, us ing  our  n o t a t i o n ,  

o r  
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when d s  i s  a g a i n  an element cf t h e  u n i t  s p h e r e  s ,  ci = a z i m i t h ,  and 9 is  t h e  

s p h e r i c a l  d i s t a n c e ;  moreover, 

The i n v e r s e  of t h i s  e q u a t i o n ,  f o r  r = R, i s  

U 
w i t h  0 = - G. (See  Ho t ine  1969,  p. 397.) 27 

By i n s p e c t i n g  t h e  f u n c t i o n  Q($) i t  i s  r e a d i l y . s e e n  t h a t  i t  behaves q u i t e  

similar t o  S tokes '  f u n c t i o n  f o r  $=O and $=180°; i t  v a n i s h e s  a t  $=O,and 

Q($=.rr)=13.2. 

The corresponding f u n c t i o n  e($)  i n  

It is tempting t o  d e r i v e  a similar r e l a t i o n  connec t ing  6g and IJ. 

( A 4  3) 

is supposed  t o  be  much s i m p l e r  than Q($) because of the r e l a t i o n  i n  

eq.  ( A 3 4 ) .  Using the i d e n t i t y  

1 - -  - 2 - -  2n+l  
n+ 1 n+l 

we f i n a l l y  o b t a i n  
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9 
2 

- 
-Q($) = 1+ -cos 

when w e  s t a r t  w i t h  n=2 i n  t h e  summati'on of t h e  s p h e r i c a l  harmonic r e p r e s e n t a -  

t i o n  o f ' p  and 6g, and 

- 
-Q' ($1 = ( A 5 i .  2 )  

when we start  w i t h  n=O, r e s p e c t i v e l y .  

The i n t e r m e d i a t e  s t e p s  i n  d e r i v i n g  t h e  l a s t  formula  are  b r i e f l y  summarized 

as fo l lows :  

D i f f e r e n t i a t e  t h e  well-known r e l a t i o n  

W 

(1-2k cos $+k2)-' = knPn(cos $) 
n=O 

v i t h  r e s p e c t  t o  k ,  m u l t i p l y  t h e  r e s u l t  by 2k,and add i t  t o  t h e  o r i g i n a l  

e q u a t i o n ,  t h u s  o b t a i n i n g  

or 

1 Eu 

1-k2 
( 2 n + l ) k n - 2 P n ( c ~ s  ' b )  = -T;:[1+3k cos 9 -  (1-2k cos $+k2) 3 p  

n= 2 

R 
r where k = - which we set  e q u a l  t o  1. 

From Hotirie (1969, p. 311) we know t h a t  

W 

H(&) = - P,(cos 11) 
n= 0 

( A 5 3 )  
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By us ing  t h e  l a t t e r  equat ion  and eq. ( f i 2 ) .  w e  o b t a i n  from equat ion  (GO) t h e  

r e l a t i o n  (451.1) and (A51.2), n o t i n g '  t h a t  

Again, t h e  i n v e r s e  t ransformat ion  is given by t h e  well-known formula: which 

i s  found i n  s l i g h t l y  d i f f e r e n t  form, f o r  example, i n  Heiskanen and Moritz 

(1967, p .  236) 

- 
S. again  be ing  the  d i s t a n c e  P d s ,  where P i s  located on s. 

Equation (A49) enables  us  t o  e x p r e s s  g r a v i t y  d i s t u r b a n c e s  w i t h i n  a l o c a l  

area o r  beyond by a s i n g l e  l a y e r  d e n s i t y .  . S u c h  a l a y e r  can b e  d i r e c t l y  com- 

p a r e d  t o  t h e  corresponding topography. 

A g r a p h i c a l  r e p r e s e n t a t i o n  of t h e  f u n c t i o n  :($I of eq. (A51.1) i s  shown i n  

f i g u r e  6. 

C($). 
whereas Hotine i n  h i s  o r i g i n a l  s t u d i e s  in t roduced  t h e  p o s i t i o n  v e r t i c a l  

g r a d i e n t  of t h e  d i s t u r b i n g  p o t e n t i a l .  The easiest way t o  make h i s  r e s u l t s  

comparable t o  o u r s  i s  t o  i n t r o d u c e  a n e g a t i v e  k e r n e l  f u n c t i o n , a s  i n  eq. (k51. 
Figure  6 shows <($) as w e l l  as :($)sin$. 

c o r r e c t s  6g and v i f  both a r e  given on a B j e r h a m a r  sphere .  However, as 

f a r  as t h e  approximation 

It should be 'noted t h a t  i n  eq.  (A51.1) w e  used -$($I i n s t e a d  of - 
T h i s  r e s u l t s  from d e f i n i n g  g r a v i t y  d i s t u r b a n c e s  by -6g = aT/3h, 

Rigorously,  formula (A49) 

1) . 

h o l d s ,  Sg does n o t  depend on t h e  e l e v a t i o n .  The s i t u a t i o n  i s  s l i g h t l y  s impler  
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A 

t han  i n  t h e  c a s e  of J g  where t h e  co r re spond ing  r e l a t i o n  r e a d s  

w i t h  P be ing  on p o i n t  on t h e  geop and Q be ing  a p o i n t  on t h e  spherop.  

For i n t e r p o l a t i o n  of g r a v i t y  us ing  t h e  c r o s s - c o r r e l a t i o n  w i t h  topography t h e  

above r e l a t i o n s  u(6g) are  of g r e a t  p r a c t i c a l  i m p a c t .  S ince  i n t e r p o l a t i o n  i s  

always invo lved  i n  precise v o r k  of  p h y s i c a l  geodesy t h e  f o r e g o i n g  formulas  are 

of  importance t o  t h e  problem d i s c u s s e d  i n  t h i s  r e p o r t .  I n s t e a d  of t h e  

aforementioned i n v e r s e  of eq.  ( A 4 9 )  w e  can ,  of  c o u r s e ,  a l s o  c o n s i d e r  (A49j as 

an i n t e g r a l  equa r ion  which is so lved  f c r  t h e  unknown 5g u s i n g  numer i ca l  

methods, i . e . ,  by r e p l a c i n g  t h e  i n t e g r a l  by a summation .process .  

blhen w e  a p p l y  t h e  same reason ing  t o  pn,which Nolodensky e t .  a l .  (1962,  

p.  147) a p p l i e d  t o  hen  and Groten and.Jochemczyk (1978) a p p l i e d  t o  6gn,  w e  end 

UQ w i t h  
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where a g a i n  s and s deno te  t h e  u n i t  s p h e r e  and a s p h e r e  of r a d i u s  r = R ,  

r e s p e c t i v e l y .  On t h e  s p h e r e  i t s e l f  t h e  k e r n e l  k r e a d s  

Care is a g a i n  necessa ry  when d e r i v a t i v e s  are  cons ide red  f o r  r=R because of t h e  

d i s c o n t i n u i t y  of d e r i v a t i v e s  on s and S ,  r e s p e c t i v e l y ,  s o  t h a t ,  e . g . ,  

vhere$ = c e n t e r  a n g l e  and n deno tes  t h e  o u t e r  s u r f a c e  normal t o  s and S .  

expanding t h e  formula 

By 

we o b t a i n  

r l r i  t h 

E($) = 1 - 'T1 knPn (cos$) 

= { [  2 sin($)]- '  P , (cos$)sin 11 d$ 
90 
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and f i n a l l y  

I 

= I + -  R2 j2' s" z($)gsin$di$da 
21T u=o $=O 

with  (8,X) as t h e  s p h e r i c a l  c o o r d i n a t e s .  Recursion formulas  f o r  e v a l u a t i n g  

k, are found by modifying t h e  formulas  f o r  6g because t h e  k e r n e l  

[ s in($ /2) ] - '  i s  i n h e r e n t  i n  t h e  analogous computations f o r  c o e f f i c i e n t s  of 6g. 

The advantage of t h i s  expansion i n  comparison t o  analogous espans ions  of Ag 

and Ak are. i l l u s t r a t e d  i n  f i g u r e s  7 and 8 f o r  (n=2,3,4,5). These c a l c u l a -  

t i o n s  were made by B .  Stock on t h e  IBM 370/168 computer. 

-.-. 0 2  
0 3  .. ..... 0 4  -.. -.. Q5 

--- 

-,I--- I I 
0" 90" 180"*0 

F i g u r e  7.--4, f o r  n = 2 .  3 ,  4, 5. 
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- 1  I I I 
0" 90" 1 80" Wo 

Figure  8.--k, f o r  n = 0 ,  1, 2 ,  3 ,  4, 5. 

The fo l lowing  arguments are a l s o  based on h i s  c a l c u l a t i o n s :  With 
2 

~ 1 ~ = 1 O  and q0 = 5 O  

GJhm us ing  formulas such as e?. (31). It i s  seen that the decrease Of the 
product w i t h  i n c r e a s i n g  n is such t h a t  f o r  s m a l l  va.lues of Jl0 a remarkable  

number of terns have t o  b e  included i n  formulas such as (31) t o  a c h i e v e  

u s e f u l  r e s u l t s .  (See f i g .  8 . )  

we show Q *u(p) f o r  t h e  GEM10 model. T h i s  i s  of i n t e r e s t  
n 

To o b t a i n  an i d e a  of t h e  o r d e r s  of magnitudes w e  computed q o n ( u )  us ing  t h e  

GEM model f o r  $,=lo and $ , = 5 O .  

such as eq. (31) .  

G ( q o ) a n ( p )  d e c r e a s e  s lowly.  On t h e  o t h e r  hand, f o r  $ , ,=5O f2w terms of t h e  
series are of i n t e r e s t  f o r  p r a c t i c a l  a p p l i c a t i o n .  F igure  9 shows t h e  r a t i o  

of &/Qn f o r  $,=lo, 5 O ,  which is  p l o t t e d  in  a smoothed form t o  i l l u s t r a t e  t h e  

g e n e r a l  t rend  for 3 ~ x 4 9 .  

T h i s  i s  of i n t e r e s t  i n  d e a l i n g  w i t h  f o m u l a s  

Table  9 shows t h a t  w i t h  d e c r e a s i n g  $, t h e  v a l u e s  of 
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Table 9.-- Kh($o)Dn(p) values f o r  $ 0 = l o ,  5' using t h e  GEM 10 data 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2 4  

3.981 
0.796 
0.351 
0.148 
0.069 
0.019 
0.008 
0.002 
<0.0003 

I1  

I t  

11 

11 

II 

11 

II 

II 

II 11 

II 

II 

II 

7.224 
1.803 
1.026 
0.579 
0.383 
0.161 
0.115 
0.076 
0.040 
0.017 
0.023 
0.011 
0.008 
0.005 
0.004 
0.004 
0.003 
0.002 
0.002 
.o. 001 
0.0003 

< 0.0003 

111,,,, 
0 10" 20" 30" 40' 50" n 

Figure 9. --Smoothed values of %/Q,. 
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APPENDIX C.--A REMARK ABOUT -I SECULAR LOVE NUMBERS -----_--- 

C o n t r a r y  t o  t h e  s e c u l a r  Love number used by me t o  d e s c r i b e  t h e  g l o b a l  

r e s p o n s e  of t h e  c a u s e  of .- s t a t i o n a r y  - t i d a l  a t t r a c t i o n ,  Munk and MacDonald 

(1960) i n t r o d u c e d  a secu l . a r  Love number d e s c r i b i n g  t h e  r e sponse  of t h e  

y i e l d i n g  c a u s e  t o  c e n t r i f u g a l  f o r c e .  

even though i t  i s  n o  l o n g e r  i m p o r t a n t .  

I n  p r i n c i p a l ,  t h e  l a t t e r  can be blamed 

McClure (1973) g i v e s  t h e  f o l l o w i n g  r e l a t i o n s  f o r  t h e  d i s t u r b a n c e s  of t h e  

i n e r t i a  t e n s o r  C i j  of t h e  E a r t h  c o r r e s p o n d i n g  t o  t h e  r o t a t i o n  components u I  

r e l a t i v e  t o  t h e  r o t a t i o n  a x i s  I 
k 

c1 3 = is (A3-AI  > u ;  I 

w i t h  A1 = maximum moment of i n e r t i a  of t h e  E a r t h ,  

A3 = minimum moment of i ne r t i a  o f  t h e  z a . r t h ,  

k 

k = s e c u l a r  Love number, 

= t i d a l  e f f e c t i v e  Love number, 

S 

and R b e i n g  t h e  mean a n g u l a r  v e l o c i t y  of t h e  E a r t h ' s  r o t a t i o n  r e f e r r e d  t o  a 

body-f ixed t e r r e s t r i a l  system. Introducing 

3G(A -A ) 
k, =+ 

and t h e  z o n a l  second d e g r e e  ha-rmonic o f  t h e  g e o p o t e n t i a l  

A +A, 
A 3 - l '  2 . A  A 

J =  2 >la2 - = *  

6 4  



w e  f i n d  3GMJ, 

The p e r t u r b a t i o n s  cij i n  t h e  t e n s o r  C i j  r ead  

*1+C11 c12 c1 3 

C i j  = (cl2 A2+C22 c23 ) 
=13 c2  3 A3+c 3 3 

H i s  t h e  mass of t h e  E a r t h ;  a i s  t h e  mean E a r t h  r a d i u s .  Assuming t h a t  

A21A1 w e  o b t a i n  an estimate f o r  ks. .However, i f  A3-A1 i s  expla ined  by d e n s i t y  

anomalies i n  t h e  upper mant le  of t h e  E a r t h  t h e  r e l a t i o n  

no l o n g e r  g i v e s  a h i n t  on t h e  y i e l d i n g  of t he  E a r t h  i n  response t o  c e n t r i f u g a l  

f o r c e s  caused by $2. To some e x t e n t ,  numerical  v a l u e s  such a s  ( C a p i t a i n e  1979) 
4 

ks = 0.95 

are d o u b t f u l .  

cannot  be determined wi thout  hypothes is .  

can,  of course ,  determine hs corresponding t o  such a s p e c i f i c  model. 

t h e  i n t r o d u c t i o n  of hypotheses  should be avoided. 

s p e c i f y  t h e  Ear th .  

(even t h e  pure ly  geomet ' r ical  d a t a )  i f  t h e  permanent t i d a l  deformation h a s  t o  

be e l i m i n a t e d .  

same framework i s  g iven  by Leick (1978) 

Moreover, t h e  corresponding second s e c u l a r  Love number ho 

Assuming a s p e c i f i c  t y p e  of body w e  

However. 

We cannot  s u f f i c i e n t l y  

hs is  necessary  f o r  t h e  r e d u c t i o n  of terrestrial  d a t a  

A crude v a l u e  is  ho = 1.96.  A a l t e r n a t i v e  formula w i t h i n  t h e  

U '  
1 - k/h - =  

U 

'+Refer to In te rna t iona lAst ronomica1  Union Symposium No. 82, T i m e  and t h e  
E a r t h ' s  Rotat-, e d i t e d  by HcCarthy and P i l k i n g t o n  (1979) f o r  a d i s c u s s i o n  
of n u t a t i o n  i n  space  and t h e  d i u r n a l  n u t a t i o n  f o r  an e l a s t i c  E a r t h .  XcClure 
(1973) used t h e  o l d  v a l u e s  of Munk and MacDonald (1960) .  Lambeck (1980) who 
used r e c e n t  d a t a  obta ined  k = 0.942. 
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+ 
where u '  is t h e  d e v i a t i o n  of t h e  a n g u l a r  momentum a x i s  H from t h e  aforemen- 

t i o n e d  body-fixed r e f e r e n c e  ax is  f o r  an e l a s t i c  E a r t h ;  u deno tes  t h e  analogous 

d e v i a t i o n  from a r i g i d  E a r t h .  Both d e v i a t i o n s  of polar-motion type  r e f e r  t o  

f o r c e d  n u t a t i o n ,  h and k ,  and have t h e  same meaning as p r e v i o u s l y .  The same 

l i m i t a t i o n s  mentioned b e f o r e  are connected w i t h  t h e  a p p l i c a t i o n  of t h i s  

formula t o  a d e t e r m i n a t i o n  of k. 
-+ 

However, H cannot  b e  observed d i r e c t l y .  

The.problem a s s o c i a t e d  w i t h  numer i ca l  v a l u e s  f o r  k h a s  been d i s c u s s e d  

i n  v a r i o u s  t ex tbooks  ( e . g . ,  S t a c e y  1977) .  The s e c u l a r  Love number used h e r e  

by m e  is n o t  q u i t e  t h e  same c o n s t a n t  as t h e  one in t roduced  by Nunk and 

MacDonald (1960) and used by McClure (1973) and o t h e r s .  Bes ides  t h e s e  

a u t h o r s ,  v a r i o u s  numerical  v a l u e s  were d e r i v e d  f o r  s p e c i f i c  d e n s i t y  models 

by Takeuchi ,  P e k e r i s ,  and Xccad, as w e l l  as o t h e r s ,  who y i e l d e d  frequency-  

dependent Love numbers ( i n  some c a s e s )  such  as 

h = 0.69 
m 

km = 0.35 R = 0.11 
m 

or 

h = 0.61 k = 0.30 tm = 0.08 
m m 

(For  a d e t a i l e d  'summary, see Melchoir (1978, pp. 105-115) .) 

These e l a s t i c  Love cumbers are f u n c t i o n s  of t h e  o s c i l l a t i o n s  of t h e  o u t e r  

c o r e ;  consequen t ly ,  t h e  c o r e  dynamics c a u s e s  s l i g h t  v a r i a t i o n s  i n  t h e  

s t a t i c  ( e l a s t i c )  v a l u e s .  The aforementioned v a l u e s  refer t o  i n f i n i t e  p e r i o d s  

of c o r e  o s c i l l a t i o n  which, however, do n o t  ex is t .  

t h e  permanent t i d e  problem a l though  t h e y  are s o m e t i m e s  used  i n  connec t ion  

w i t h  t h i s  problem. 

They are not r e l a t e d  t o  

66 



When w e  compare t h e  v a r i o u s  experimented d e t e r m i n a t i o n s  of k us ing  t h e  

v a r i a t i o n s  of t h e  E a r t h ' s  speed of r o t a t i o n  v a r y i n g  between (Nelchior  1978, 

p.  416) 

0.300 and 0.343 

i n  t h e  case of t h e  f o r t n i g h t l y  t i d e ,  and between 

0.265 and 0.301 

f o r  t h e  monthly l u n a r  t i d e ,  then it  is  r e a l i z e d  t h a t  i t  is  b e t t e r  t o  avoid any 

r e d u c t i o n s  of h igh-prec is ion  g e o d e t i c  d a t a  involv ing  such parameters  w i t h  

u n c e r t a i n t i e s  of more than 10 percent .  I n  t h e  case of R t h e  s i t u a t i o n  is  

s t i l l  worse. We know t o o  l i t t l e  about t h e  z e r o  frequency behavior  of t h e  

E a r t h .  We end up w i t h  t h e  f i n a l  conclusion:  assuming, b e s i d e s  h y d r o s t a t i c  

e q u i l i b r i u m ,  t h a t  t h e  v i s c o u s  and e l a s t i c  responses  of t h e  E a r t h  do n o t  

depend on t h e  ampli tude of t h e  deformation,  t h e  use  of f l u i d  Love numbers 

hf = 1.934 and kf = 0.934 

as proposed by Lambeck (1980, pp. 26-29) i s  j u s t i f i e d .  Otherwise,  t h e  v a l u e s  

0.28 5 k L 0.934 

0.6 5 k c 1.934 

seem t o ' b e  a p p r o p r i a t e .  

whenever dynamic i n t e r p r e t a t i o n s  of t h e  f l a t t e n i n g  are of i n t e r e s t .  (See,  

e . g . ,  Lambeck (1980, p. 261.1 To prevent  i n c o n s i s t e n c i e s ,  any c o r r e c t i o n s  

i n  g e o d e t i c  a p p l i c a t i o n s  by which t h e  f l a t t e n i n g  of t h e  E a r t h ' i s  modif ied 

should be avoided. 

The permanent t i d e  must b e  taken i n t o  account  f u l l y  

Although t h e  c e n t r i f u g a l  f o r c e  behaves analogously t o  t h e  permanent t i d a l  

f o r c e ,  t h e  ampl i tudes  of b o t h  f o r c e s  are so  d i f f e r e n t  t h a t  t h e  f l u i d  Love 

numbers d e r i v e d  from c e n t r i f u g a l  f o r c e s  are n o t  n e c e s s a r i l y  u s e f u l  para- 

meters i n  permanent t i d e  i n v e s t i g a t i o n s .  
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